scholarly journals Dynamic structural operational semantics

2019 ◽  
Vol 107 ◽  
pp. 79-107 ◽  
Author(s):  
Christian Johansen ◽  
Olaf Owe
2021 ◽  
Vol 181 (1) ◽  
pp. 1-35
Author(s):  
Jane Hillston ◽  
Andrea Marin ◽  
Carla Piazza ◽  
Sabina Rossi

In this paper, we study an information flow security property for systems specified as terms of a quantitative Markovian process algebra, namely the Performance Evaluation Process Algebra (PEPA). We propose a quantitative extension of the Non-Interference property used to secure systems from the functional point view by assuming that the observers are able to measure also the timing properties of the system, e.g., the response time of certain actions or its throughput. We introduce the notion of Persistent Stochastic Non-Interference (PSNI) based on the idea that every state reachable by a process satisfies a basic Stochastic Non-Interference (SNI) property. The structural operational semantics of PEPA allows us to give two characterizations of PSNI: one based on a bisimulation-like equivalence relation inducing a lumping on the underlying Markov chain, and another one based on unwinding conditions which demand properties of individual actions. These two different characterizations naturally lead to efficient methods for the verification and construction of secure systems. A decision algorithm for PSNI is presented and an application of PSNI to a queueing system is discussed.


1998 ◽  
Vol 8 (5) ◽  
pp. 481-540 ◽  
Author(s):  
DANIELE TURI ◽  
JAN RUTTEN

This paper, a revised version of Rutten and Turi (1993), is part of a programme aiming at formulating a mathematical theory of structural operational semantics to complement the established theory of domains and denotational semantics to form a coherent whole (Turi 1996; Turi and Plotkin 1997). The programme is based on a suitable interplay between the induction principle, which pervades modern mathematics, and a dual, non-standard ‘coinduction principle’, which underlies many of the recursive phenomena occurring in computer science.The aim of the present survey is to show that the elementary categorical notion of a final coalgebra is a suitable foundation for such a coinduction principle. The properties of coalgebraic coinduction are studied both at an abstract categorical level and in some specific categories used in semantics, namely categories of non-well-founded sets, partial orders and metric spaces.


Sign in / Sign up

Export Citation Format

Share Document