scholarly journals Numerical solution of a mixed singularly perturbed parabolic–elliptic problem

2006 ◽  
Vol 320 (1) ◽  
pp. 361-380 ◽  
Author(s):  
Iliya A. Brayanov
2020 ◽  
Vol 48 (4) ◽  
pp. 45-111
Author(s):  
A. F. Shepetkin

A new algorithm for constructing orthogonal curvilinear grids on a sphere for a fairly general geometric shape of the modeling region is implemented as a “compile-once - use forever” software package. It is based on the numerical solution of the inverse problem by an iterative procedure -- finding such distribution of grid points along its perimeter, so that the conformal transformation of the perimeter into a rectangle turns this distribution into uniform one. The iterative procedure itself turns out to be multilevel - i.e. an iterative loop built around another, internal iterative procedure. Thereafter, knowing this distribution, the grid nodes inside the region are obtained solving an elliptic problem. It is shown that it was possible to obtain the exact orthogonality of the perimeter at the corners of the grid, to achieve very small, previously unattainable level of orthogonality errors, as well as make it isotropic -- local distances between grid nodes about both directions are equal to each other.


2016 ◽  
Vol 20 (5) ◽  
pp. 1340-1358 ◽  
Author(s):  
Yanping Chen ◽  
Li-Bin Liu

AbstractIn this paper, we study the numerical solution of singularly perturbed time-dependent convection-diffusion problems. To solve these problems, the backward Euler method is first applied to discretize the time derivative on a uniform mesh, and the classical upwind finite difference scheme is used to approximate the spatial derivative on an arbitrary nonuniform grid. Then, in order to obtain an adaptive grid for all temporal levels, we construct a positive monitor function, which is similar to the arc-length monitor function. Furthermore, the ε-uniform convergence of the fully discrete scheme is derived for the numerical solution. Finally, some numerical results are given to support our theoretical results.


Sign in / Sign up

Export Citation Format

Share Document