elliptic problem
Recently Published Documents


TOTAL DOCUMENTS

897
(FIVE YEARS 143)

H-INDEX

34
(FIVE YEARS 4)

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3015
Author(s):  
Gregory A. Chechkin

In this paper, we consider an elliptic problem in a domain perforated along the boundary. By setting a homogeneous Dirichlet condition on the boundary of the cavities and a homogeneous Neumann condition on the outer boundary of the domain, we prove higher integrability of the gradient of the solution to the problem.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shapour Heidarkhani ◽  
Shahin Moradi ◽  
Mustafa Avci

Abstract Differential equations with variable exponent arise from the nonlinear elasticity theory and the theory of electrorheological fluids. We study the existence of at least three weak solutions for the nonlocal elliptic problems driven by p ⁢ ( x ) p(x) -biharmonic operator. Our technical approach is based on variational methods. Some applications illustrate the obtained results. We also provide an example in order to illustrate our main abstract results. We extend and improve some recent results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Debajyoti Choudhuri ◽  
Dušan D. Repovš

AbstractIn this paper we establish the existence and multiplicity of nontrivial solutions to the following problem: $$\begin{aligned} \begin{aligned} (-\Delta )^{\frac{1}{2}}u+u+\bigl(\ln \vert \cdot \vert * \vert u \vert ^{2}\bigr)&=f(u)+\mu \vert u \vert ^{- \gamma -1}u,\quad \text{in }\mathbb{R}, \end{aligned} \end{aligned}$$ ( − Δ ) 1 2 u + u + ( ln | ⋅ | ∗ | u | 2 ) = f ( u ) + μ | u | − γ − 1 u , in  R , where $\mu >0$ μ > 0 , $(*)$ ( ∗ ) is the convolution operation between two functions, $0<\gamma <1$ 0 < γ < 1 , f is a function with a certain type of growth. We prove the existence of a nontrivial solution at a certain mountain pass level and another ground state solution when the nonlinearity f is of exponential critical growth.


Nonlinearity ◽  
2021 ◽  
Vol 34 (11) ◽  
pp. 7842-7871
Author(s):  
C A Santos ◽  
Minbo Yang ◽  
Jiazheng Zhou

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
MirKeysaan Mahshid ◽  
Abdolrahman Razani

AbstractHere, we consider the following elliptic problem with variable components: $$ -a(x)\Delta _{p(x)}u - b(x) \Delta _{q(x)}u+ \frac{u \vert u \vert ^{s-2}}{|x|^{s}}= \lambda f(x,u), $$ − a ( x ) Δ p ( x ) u − b ( x ) Δ q ( x ) u + u | u | s − 2 | x | s = λ f ( x , u ) , with Dirichlet boundary condition in a bounded domain in $\mathbb{R}^{N}$ R N with a smooth boundary. By applying the variational method, we prove the existence of at least one nontrivial weak solution to the problem.


Sign in / Sign up

Export Citation Format

Share Document