scholarly journals A note on asymptotic behavior of solutions for the one-dimensional bipolar Euler–Poisson system

2010 ◽  
Vol 361 (2) ◽  
pp. 322-331
Author(s):  
Peiyuan Meng ◽  
Yeping Li
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Raffaela Capitanelli ◽  
Maria Agostina Vivaldi

AbstractIn this paper, we study asymptotic behavior of solutions to obstacle problems for p-Laplacians as {p\to\infty}. For the one-dimensional case and for the radial case, we give an explicit expression of the limit. In the n-dimensional case, we provide sufficient conditions to assure the uniform convergence of the whole family of the solutions of obstacle problems either for data f that change sign in Ω or for data f (that do not change sign in Ω) possibly vanishing in a set of positive measure.


2019 ◽  
Vol 29 (07) ◽  
pp. 1387-1412 ◽  
Author(s):  
Peter Y. H. Pang ◽  
Yifu Wang

This paper studies the following system of differential equations modeling tumor angiogenesis in a bounded smooth domain [Formula: see text] ([Formula: see text]): [Formula: see text] where [Formula: see text] and [Formula: see text] are positive parameters. For any reasonably regular initial data [Formula: see text], we prove the global boundedness ([Formula: see text]-norm) of [Formula: see text] via an iterative method. Furthermore, we investigate the long-time behavior of solutions to the above system under an additional mild condition, and improve previously known results. In particular, in the one-dimensional case, we show that the solution [Formula: see text] converges to [Formula: see text] with an explicit exponential rate as time tends to infinity.


2004 ◽  
Vol 4 (4) ◽  
pp. 1129-1142 ◽  
Author(s):  
N. Ben Abdallah ◽  
◽  
M. Lazhar Tayeb ◽  

Sign in / Sign up

Export Citation Format

Share Document