Evaluation of two CAD/CAM materials for Nayyar core and post-retained restorations: Three dimensional stress analysis

Author(s):  
Nuran Ulusoy ◽  
Laden Gulec Alagoz
2021 ◽  
Vol 10 (9) ◽  
pp. 1922
Author(s):  
Carlos Navarro Cuéllar ◽  
Manuel Tousidonis Rial ◽  
Raúl Antúnez-Conde ◽  
Santiago Ochandiano Caicoya ◽  
Ignacio Navarro Cuéllar ◽  
...  

Mandibular reconstruction with fibula flap shows a 3D discrepancy between the fibula and the remnant mandible. Eight patients underwent three-dimensional reconstruction of the fibula flap with iliac crest graft and dental implants through virtual surgical planning (VSP), stereolitographic models (STL) and CAD/CAM titanium mesh. Vertical ridge augmentation and horizontal dimensions of the fibula, peri-implant bone resorption of the iliac crest graft, implant success rate and functional and aesthetic results were evaluated. Vertical reconstruction ranged from 13.4 mm to 10.1 mm, with an average of 12.22 mm. Iliac crest graft and titanium mesh were able to preserve the width of the fibula, which ranged from 8.9 mm to 11.7 mm, with an average of 10.1 mm. A total of 38 implants were placed in the new mandible, with an average of 4.75 ± 0.4 implants per patient and an osseointegration success rate of 94.7%. Two implants were lost during the osseointegration period (5.3%). Bone resorption was measured as peri-implant bone resorption at the mesial and distal level of each implant, with a variation between 0.5 mm and 2.4 mm, and with a mean of 1.43 mm. All patients were rehabilitated with a fixed implant prosthesis with good aesthetic and functional results.


Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 296
Author(s):  
Richard H. Groshong

This paper is a personal account of the origin and development of the twinned-calcite strain gauge, its experimental verification, and its relationship to stress analysis. The method allows the calculation of the three-dimensional deviatoric strain tensor based on five or more twin sets. A minimum of about 25 twin sets should provide a reasonably accurate result for the magnitude and orientation of the strain tensor. The opposite-signed strain axis orientation is the most accurately located. Where one strain axis is appreciably different from the other two, that axis is generally within about 10° of the correct value. Experiments confirm a magnitude accuracy of 1% strain over the range of 1–12% axial shortening and that samples with more than 40% negative expected values imply multiple or rotational deformations. If two deformations are at a high angle to one another, the strain calculated from the positive and negative expected values separately provides a good estimate of both deformations. Most stress analysis techniques do not provide useful magnitudes, although most provide a good estimate of the principal strain axis directions. Stress analysis based on the number of twin sets per grain provides a better than order-of-magnitude approximation to the differential stress magnitude in a constant strain rate experiment.


2017 ◽  
Vol 117 (3) ◽  
pp. 373-379 ◽  
Author(s):  
Anna Gabriella Camacho Presotto ◽  
Cláudia Lopes Brilhante Bhering ◽  
Marcelo Ferraz Mesquita ◽  
Valentim Adelino Ricardo Barão

1994 ◽  
Vol 27 (6) ◽  
pp. 826
Author(s):  
A.J. van den Bogert ◽  
B.M. Nigg

Sign in / Sign up

Export Citation Format

Share Document