Modeling the effects of drillstring eccentricity, pipe rotation and annular blockage on cuttings transport in deviated wells

2020 ◽  
Vol 79 ◽  
pp. 103221
Author(s):  
Oney Erge ◽  
Eric van Oort
2019 ◽  
Vol 196 ◽  
pp. 00011 ◽  
Author(s):  
Yaroslav Ignatenko ◽  
Andrey Gavrilov ◽  
Oleg Bocharov ◽  
Roland May

The current study is devoted to simulating cuttings transport by drilling fluid through a horizontal section of borehole with an annular cross section. Drill pipe rotates in fixed eccentric position. Steady-state flow is considered. Cuttings are rigid spheres with equal diameters. The carrying fluid is drilling mud with Herschel-Bulkley rheology. Suspension rheology depends on local shear rate and particles concentration. Continuous mixture model with algebraic equation for particles slipping velocity is used. Two hydrodynamic regimes are considered: axial flow without drill pipe rotation and with drill pipe rotation. In the case of axial flow was shown that increasing of power index n and consistency factor k increases pressure gradient and decreases cuttings concentration. Increasing of yield stress leads to increasing of pressure gradient and cuttings concentration. Cuttings concentration achieves constant value for high yield stress and not depends on it. Rotation of the drill pipe significantly changes the flow structure: pressure loss occurs and particles concentration decreases in the cross section. Two basic regimes of rotational flow are observed: domination of primary vortex around drill pipe and domination secondary vorticity structures. Transition between regimes leads to significant changes of flow integral parameters.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Mehmet Sorgun

In this study, simple empirical frictional pressure losses and cuttings bed thickness correlations including pipe rotation are developed for solid-liquid flow in horizontal and deviated wellbores. Pipe rotation effects on cuttings transport in horizontal and highly inclined wells are investigated experimentally. Correlations are validated experimental data with pure water as well as four different non-Newtonian fluids for hole inclinations from horizontal to 60 degrees, flow velocities from 0.64 m/s to 3.56 m/s, rate of penetrations from 0.00127 to 0.0038 m/s, and pipe rotations from 0 to 250 rpm. Pressure drop within the test section, and stationary and/or moving bed thickness are recorded besides the other test conditions. The new correlations generated in this study are believed to be very practical and handy when they are used in the field.


2021 ◽  
pp. 1-18
Author(s):  
Mohammad Mojammel Huque ◽  
Syed Imtiaz ◽  
Sohrab Zendehboudi ◽  
Stephen Butt ◽  
Mohammad Azizur Rahman ◽  
...  

Summary Hole cleaning is a concern in directional and horizontal well drilling operations where drill cuttings tend to settle in the lower annulus section. Laboratory-scale experiments were performed with different non-Newtonian fluids in a 6.16-m-long, 114.3- × 63.5-mm transparent annulus test section to investigate cuttings transport behavior. This experimental study focused on understanding the cuttings transport mechanism in the annulus section with high-speed imaging technology. The movement of cuttings in the inclined annular section was captured with a high-speed camera at 2,000 frames/sec. Also, cuttings bed movement patterns at different fluid velocities and inner pipe rotations were captured with a digital single-lens reflex video camera. The electrical resistance tomography (ERT) system was used to quantify the cuttings volume fraction in the annulus. Different solid bed heights and cuttings movements were observed based on fluid rheology, fluid velocity, and inner pipe rotation. The mechanistic three-layer cuttings transport model was visualized with the experimental procedure. This study showed that solid bed height is significantly reduced with an increase in the inner pipe rotation. This study also identified that cuttings bed thickness largely depends on fluid rheology and wellbore inclination. The image from the high-speed camera identified a downward trend of some rolling particles in the annulus caused by gravitational force at a low mud velocity. Visual observation from a high-speed camera identified a helical motion of solid particles when the drillpipe is in contact with solid particles and rotating at a higher rev/min. Different cuttings movement patterns such as: rolling, sliding, suspension, helical movement, and downward movement were identified from the visualization of a high-speedcamera.


2004 ◽  
Author(s):  
R. Avila ◽  
E. Pereira ◽  
S. Miska ◽  
N. Takach ◽  
A. Saasen

2008 ◽  
Vol 23 (02) ◽  
pp. 132-141 ◽  
Author(s):  
Ricardo J. Avila ◽  
Edgar J. Pereira ◽  
Stefan Z. Miska ◽  
Nicholas E. Takach

2021 ◽  
Author(s):  
Murat Ozbayoglu ◽  
Evren Ozbayoglu ◽  
Baris Guney Ozdilli ◽  
Oney Erge

Abstract Drilling practice has been evolving parallel to the developments in the oil and gas industry. Current supply and demand for oil and gas dictate search for hydrocarbons either at much deeper and hard-to-reach fields, or at unconventional fields, both requiring extended reach wells, long horizontal sections, and 3D complex trajectories. Cuttings transport is one of the most challenging problems while drilling such wells, especially at mid-range inclinations. For many years, numerous studies have been conducted to address modeling of cuttings transport, estimation of the concentration of cuttings as well as pressure losses inside the wellbores, considering various drilling variables having influence on the process. However, such attempts, either mechanistic or empirical, have many limitations due to various simplifications and assumptions made during the development stage. Fluid thixotropy, temperature variations in the wellbore, uncertainty in pipe eccentricity as well as chaotic motion of cuttings due to pipe rotation, imperfections in the wellbore walls, variations in the size and shape of the cuttings, presence of tool joints on the drillstring, etc. causes the modeling of the problem extremely difficult. Due to the complexity of the process, the estimations are usually not very accurate, or not reliable. In this study, data-driven models are used to address the estimation of cuttings concentration and frictional loss estimation in a well during drilling operations, instead of using mechanistic or empirical methods. The selected models include Artificial Neural Networks, Random Forest, and AdaBoost. The training of the models is determined using the experimental data regarding cuttings transport tests collected in the last 40 years at The University of Tulsa – Drilling Research Projects, which includes a wide range of wellbore and pipe sizes, inclinations, ROPs, pipe rotation speeds, flow rates, fluid and cuttings properties. The evaluation of the models is conducted using Root Mean Square Error, R-Squared Values, and P-Value. As the inputs of the data-driven models, independent drilling variables are directly used. Also, as a second approach, dimensionless groups are developed based on these independent drilling variables, and these dimensionless groups are used as the inputs of the models. Moreover, performance of the data-driven model results are compared with the results of a conventional mechanistic model. It is observed that in many cases, data-driven models perform significantly better than the mechanistic model, which provides a very promising direction to consider for real time drilling optimization and automation. It is also concluded that using the independent drilling variables directly as the model inputs provided more accurate results when compared with dimensional groups are used as the model inputs.


Sign in / Sign up

Export Citation Format

Share Document