pressure losses
Recently Published Documents


TOTAL DOCUMENTS

1127
(FIVE YEARS 234)

H-INDEX

34
(FIVE YEARS 4)

2022 ◽  
Vol 21 (4) ◽  
pp. 337-345
Author(s):  
A. T. Rybak ◽  
A. V. Ivanovskaya ◽  
P. P. Batura ◽  
A. Yu. Pelipenko

Introduction. The paper submits the analysis of existing design solutions of flow dividers used to synchronize hydraulic drives of working bodies of technological and mobile machines. The market demands for multithreaded throttle flow dividers without valves with the controlled division ratio, such as multi-axle vehicle chassis, are identified. The objective of the work was to analyze the possibility and rationale for developing a throttle four-way flow divider without valves with sensing elements of the Venturi tube type. The solution should provide the synchronicity of movement (rotation) of more than three working bodies of technological and mobile machines.Materials and Methods. A patent search for the designs of hydraulic flow dividers is carried out, and systems that require the division of the hydraulic fluid flow into more than two executive bodies are considered. An upgrade option, which allows dividing the flow into four branches, is proposed for the design of a three-channel throttle flow divider without valves.Results. The urgency of developing a multithreaded throttle flow divider without valves for application in industrial and mobile machines is validated. Two types of four-flow dividers are considered, their weaknesses are indicated. It is noted that the development of a multithreaded throttle flow divider based on the designs created in 1989 and 1991 will reduce the number of hydraulic pumps and get rid of the series connection of double-flow dividers. In this way, it is possible to reduce pressure losses in the hydraulic system and implement adaptive control of hydraulic motors of multi-motor mobile machines. The possibility to obtain a divider/combiner into four flows by adding an outlet chamber connected to the membrane chamber through a channel entering the Venturi nozzle on the basis of a three-flow throttle divider is shown. The principle of operation of such equipment is described.Discussion and Conclusions. The principles of construction of throttle flow dividers without valves are considered. An upgrade option is proposed to increase the number of division channels from three to four. However, to validate the operability of this design, a numerical analysis of the various modes of operation of the divider is required — calculation of the reduced volumetric stiffness of its working cavities. The information obtained can be used to modernize the hydraulic units of technological and mobile machines, increase their reliability, manufacturability, and efficiency. The issues that need to be solved in further research are identified.


Author(s):  
K.A. Soltanbekova ◽  
◽  
B.K. Assilbekov ◽  
A.B. Zolotukhin ◽  
◽  
...  

One of the modern approaches for the effective development of small deposits is the construction and operation of wells with a complex architecture: horizontal wells (HW), sidetracks (BS, BGS), multilateral wells (MLW). Sidetracking makes it possible to reanimate an old well that is in an emergency state or inactivity for technological reasons, by opening layers that have not been previously developed, bypassing contamination zones, or watering the formation. This study examines the possibility of using horizontal sidetracks in the operating wells of the field of the Zhetybai group. To select the optimal length of the horizontal sidetrack of the wells, graphs of the dependences of the change in flow rate versus length of the horizontal well were built, taking into account the pressure losses due to friction. It can be seen from the dependence of NPV versus length of the horizontal wellbore that the maximum NPV is achieved with a horizontal wellbore length of 100 m. A further increase in the length of the horizontal wellbore leads to a decrease in NPV. This is due, firstly, to a decrease in oil prices, and secondly, interference of wells, a small number of residual reserves, and a small oil-bearing area. As a result of a comparison of technical and economic criteria, the optimal length of a horizontal wellbore is from 100-300 meters. Comparison of the flow rates of vertical wells and wells with horizontal sidetracks showed a clear advantage over the latter in all respects.


Author(s):  
G. G. Gilaev ◽  
◽  
M. Ya. Khabibullin ◽  
R. N. Bakhtizin ◽  
◽  
...  

The analysis of theoretical solutions and experimental data given in numerous literatures to justify the choice of the ratio of the size of gravel in relation to the size of formation sand showed that with the development of experimental methods and the accumulation of laboratory and field data, this ratio tends to decrease. When installing filters in an open hole, pressure losses at the interface between gravel and the formation play a significant role, and it should be noted that the greatest productivity and efficiency of the filter in an open hole is achieved when there is a packing around it, which can be created by crushing the sandy massif of the formation by cyclical changes debit. When choosing a filter design, along with the ability to provide them with a reliable hydraulic connection in the reservoir-filter system, the main task is also solved - to prevent sand flow into the well. The study of the conditions for the removal of sand particles through the flow sections in perforated, mesh and slotted filters during their operation both in homogeneous and in sands of different size, made it possible to recommend empirical dependences for determining the size of the holes. Keywords: porous medium; coarse fraction; sand; particle; well.


2021 ◽  
Author(s):  
Jelena Skenderija ◽  
Alexis Koulidis ◽  
Vassilios Kelessidis ◽  
Shehab Ahmed

Abstract Challenging wells require an accurate hydraulic model to achieve maximum performance for drilling applications. This work was conducted with a simulator capable of recreating the actual drilling process, including on-the-fly adjustments of the drilling parameters. The paper focuses on the predictions of the drilling simulator's pressure losses inside the drill string and across the open-hole and casing annuli applying the most common rheological models. Comparison is then made with pressure losses from field data. Drilling data of vertical and deviated wells were acquired to recreate the actual drilling environment and wellbore design. Several sections with a variety of wellbore sizes were simulated in order to observe the response of the various rheological models. The simulator allows the input of wellbore and bottom-hole assembly (BHA) sizes, formation properties, drilling parameters, and drilling fluid properties. To assess the hydraulic model's performance during drilling, the user is required to input the drilling parameters based on field data and match the penetration rate. The resulting simulator hydraulic outputs are the equivalent circulation density (ECD) and standpipe pressure (SPP). The simulator's performance was assessed using separate simulations with different rheological models and compared with actual field data. Similarities, differences, and potential improvements were then reported. During the simulation, the most critical drilling parameters are displayed, emulating real-time measured values, combined with the pore pressure, wellbore pressure, and fracture pressure graphs. The simulation results show promise for application of real-time hydraulic operations. The simulated output parameters, ECD and SPP, have similar trends and values with the values from actual field data. The simulator's performance shows excellent matching for a simple BHA, with decreasing system's accuracy as the BHA design becomes more complex, an area of future improvement. The overall approach is valid for non-Newtonian drilling fluid pressure losses. The user can observe the output parameters, and by adding a benchmark safety value, the simulator gives a warning of a potential fracture of the formation or maximum pressure at the mud pumps. Thus, by simulating the drilling process, the user can be trained for the upcoming drilling campaign and reach the target depth safely and cost-effectively during actual drilling. The simulator allows emulation of real-time hydraulic operations when drilling vertical and directional wells, albeit with a simple BHA for the latter. The user can instantly observe the output results, which allows proper action to be taken if necessary. This is a step towards real-time hydraulic operations. The results also indicate that the simulator can be used as an excellent training tool for professionals and students by creating wellbore exercises that can cover different operating scenarios.


Author(s):  
Olena Gizha

Analyzing the existing dependences on the calculation of short pressure pipelines in turbulent mode, significant shortcomings of these recommendations were identified. A physical model of motion is proposed, which explains the processes occurring in the area of stabilization after local resistance and allows to establish the factors influencing its length.Experiments on pipes with different roughness and different pipeline fittings made it possible to analyze the change in kinematic characteristics in the area after resistance. Studies have shown that in short pipes, the length of which is less than the length of the stabilization section, there are less pressure losses than in the calculations by the usual method, when there are simply local and length losses. Dependencies and graphs are given that take into account the mutual influence of local resistances in the case of their location at a distance less than the stabilization area. The proposed recommendations make it possible to make more informed economic decisions when designing short pressure pipelines of various water supply systems.


2021 ◽  
Author(s):  
Kanat Aktassov ◽  
Dauletbek Ayaganov ◽  
Kanat Imagambetov ◽  
Ruslan Alissov ◽  
Said Muratbekov ◽  
...  

Abstract This paper presents a practical methodology of optimizing and building a detailed field surface network system by using the high-resolution reservoir simulator driven custom-made Python scripts to efficiently predict the future performance of the vast oil and gas-condensate carbonate field. All existing surface hydraulic tables are quality checked and lifting issue constraints corrected. Pressure losses at the wellhead chokes incorporated into the high-resolution reservoir simulator in the form of equation by using the custom scripts instead of a table format to calculate gas rate dependent pressure losses more precisely. Consequently, all 400+ surface production system manifolds, pipes and well chokes Horizontal Flow Performance (HFP) tables are updated and coupled to the reservoir simulator through Field Management (FM) controller which in turn generates Inflow Performance Relationship (IPR) tables for the coupled wells and passes them to solve the network. The methodology described in this paper applied for a complex field development planning of the Karachaganak. At present, reservoir management strategy requires constant balancing effort to uniformly spread gas re-injection into the lower Voidage Replacement Ratio areas in the Upper Gas-Condensate part of the reservoir due to reservoir heterogeneity. Additionally, an increase in field and wells gas-oil ratio and water-cut creates bottlenecks in the surface gathering system and requires robust solutions to decongest the surface network. Current simulation tools are not always effective due longer run times and simulation instability due to complex network system. As a solution, project-specific network balancing challenges are resolved by incorporating custom-made scripts into the high-resolution simulator. Faster and flexible integrated model based on hydraulic tables reproduced the historical pressure losses of the surface pipelines at similar resolution and generated accurate prediction profiles in a twice-quicker time than existing reservoir simulator. Overall, this approach helped to generate more stable production profiles by identifying bottlenecks in the surface network and evaluate future projects with more confidence by achieving a significant CAPEX cost savings. The comprehensive guidelines provided in this paper can aid reservoir modeling by setting up flexible integrated models to account for surface network effects. The value of incorporating Python scripts demonstrated to implement non-standard and project specific network balancing solutions leveraging on the flexibility and the openness of the modelling tool.


Author(s):  
Dmytro Konovalov ◽  
Mykola Radchenko ◽  
Halina Kobalava ◽  
Andrii Radchenko ◽  
Roman Radchenko ◽  
...  

Complex gas turbine schemes with air intercooling are usually used to bring the compression process of working fluid in compressor closer to isothermal one. A promising way to realize it is to use an aerothermopressor. The aerothermopressor is a two-phase jet apparatus, in which the highly dispersed liquid (water) is injected into the superheated gas (air) stream accelerated to the speed closed to the sound speed value (Mach number from 0.8 to 0.9). The air pressure at the aerothermopressor outlet (after diffuser) is higher than at the inlet due to instantaneous evaporation of highly dispersed liquid practically without friction losses in mixing chamber and with an increase in pressure of the mixed homogenous flow. The liquid evaporation is conducted by removing the heat from the air flow. In the course of the experimental research, the operation of the aerothermopressor for gas turbine intercooling air was simulated and its characteristics (hydraulic resistance coefficients, pressure increase, and air temperature) were determined. Within contact cooling of air in the aerothermopressor, the values of the total pressure increase in the aerothermopressor were from 1.02 to 1.04 (2–4%). Thus, the aerothermopressor use to provide contact evaporative cooling of cyclic air between the compressor stages will ensure not only compensation for pressure losses but also provides an increase in total air pressure with simultaneous cooling. Injection of liquid in a larger amount than is necessary for evaporation ensures a decrease in pressure losses in the flow path of the aerothermopressor by 15–20%. When the amount of water flow is more than 10–15%, the pressure loss becomes equal to the loss for the “dry” aerothermopressor, and with a further increase in the amount of injected liquid, they are exceeded. The values of errors in the relative increase of air pressure in the aerothermopressor measurements not exceeded 4%. The results obtained can be used in the practice of designing intercooling systems for gas turbines.


Sign in / Sign up

Export Citation Format

Share Document