Predication of skin temperature and thermal comfort under two-way transient environments

2017 ◽  
Vol 70 ◽  
pp. 15-20 ◽  
Author(s):  
Xin Zhou ◽  
Jing Xiong ◽  
Zhiwei Lian
2019 ◽  
Vol 1 (3) ◽  
pp. 1-4
Author(s):  
Zaina Norhallis Zainol ◽  
Masine Md. Tap ◽  
Haslinda Mohamed Kamar

Thermal comfort is the human subject perceive satisfaction to the work environment. The thermal comfort need to be achieve towards productive working environment. The comfort level of the subject is affected by the human skin temperature. To assess the skin temperature with the sorrounding by conducting human experiment in the climatic chamber. It is rigorous and complex experiment.This study was developed to predict human skin temperature in comfort level with the finite element method and the bioheat equation. The bioheat equation is a consideration of metabolic heat generation and the blood perfusion to solve heat transfer of the living tissue. It is to determine the skin temperature focussing at the human arm. From the study, it is found that the predicted skin temperature value were in well agreement with the experimental results. The percentage error insignificant with acceptable error of 1.05%.


Ergonomics ◽  
2013 ◽  
Vol 56 (7) ◽  
pp. 1194-1202 ◽  
Author(s):  
B. Ayres ◽  
J. White ◽  
W. Hedger ◽  
J. Scurr

2007 ◽  
Vol 42 (12) ◽  
pp. 3984-3999 ◽  
Author(s):  
Tomonori Sakoi ◽  
Kazuyo Tsuzuki ◽  
Shinsuke Kato ◽  
Ryozo Ooka ◽  
Doosam Song ◽  
...  

2020 ◽  
Vol 172 ◽  
pp. 06001
Author(s):  
Håkon Solberg ◽  
Kari Thunshelle ◽  
Peter Schild

An increasing part of modern building's energy demand is due to cooling. An ongoing research project investigates the possibility to reduce the energy consumption from cooling by utilizing an individually controlled active ventilation diffuser mounted in the ceiling. This study looks at thermal sensation and thermal comfort for 21 test persons exposed to an innovative user controlled active ventilation valve, in a steady and thermally uniform climate chamber. Furthermore, the relationship between biometric data from the test persons skin temperature and sweat, and the test persons thermal sensation scores has been investigated. Each test person was exposed to three different room temperatures in the climate chamber, 24°C, 26°C and 28°C respectively, to simulate typical hot summer conditions in an office in Norway. At a room temperature of 26°C it was possible to achieve acceptable thermal comfort for most test persons with this solution, but higher air velocity than 0.75 m/s around the test persons bodies at room temperatures of 28°C is required to ensure satisfactory thermal comfort.


1970 ◽  
Vol 48 (2) ◽  
pp. 98-101 ◽  
Author(s):  
E. D. L. Topliff ◽  
S. D. Livingstone

Nude men were exposed to a range of ambient temperatures and were brought to a condition of thermal comfort by adjustment of the incident radiation. The mean skin temperature associated with comfort was found to be different for each combination of ambient temperature and incident radiation. It was evident that mean skin temperature, per se, was not a dependable criterion of thermal comfort.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wilhelme W. Piispanen ◽  
Richard V. Lundell ◽  
Laura J. Tuominen ◽  
Anne K. Räisänen-Sokolowski

Introduction: Cold water imposes many risks to the diver. These risks include decompression illness, physical and cognitive impairment, and hypothermia. Cognitive impairment can be estimated using a critical flicker fusion frequency (CFFF) test, but this method has only been used in a few studies conducted in an open water environment. We studied the effect of the cold and a helium-containing mixed breathing gas on the cognition of closed circuit rebreather (CCR) divers.Materials and Methods: Twenty-three divers performed an identical dive with controlled trimix gas with a CCR device in an ice-covered quarry. They assessed their thermal comfort at four time points during the dive. In addition, their skin temperature was measured at 5-min intervals throughout the dive. The divers performed the CFFF test before the dive, at target depth, and after the dive.Results: A statistically significant increase of 111.7% in CFFF values was recorded during the dive compared to the pre-dive values (p < 0.0001). The values returned to the baseline after surfacing. There was a significant drop in the divers’ skin temperature of 0.48°C every 10 min during the dive (p < 0.001). The divers’ subjectively assessed thermal comfort also decreased during the dive (p = 0.01).Conclusion: Our findings showed that neither extreme cold water nor helium-containing mixed breathing gas had any influence on the general CFFF profile described in the previous studies from warmer water and where divers used other breathing gases. We hypothesize that cold-water diving and helium-containing breathing gases do not in these diving conditions cause clinically relevant cerebral impairment. Therefore, we conclude that CCR diving in these conditions is safe from the perspective of alertness and cognitive performance.


Sign in / Sign up

Export Citation Format

Share Document