skin temperature
Recently Published Documents


TOTAL DOCUMENTS

2666
(FIVE YEARS 497)

H-INDEX

74
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Giulia Bonino ◽  
Doroteaciro Iovino ◽  
Laurent Brodeau ◽  
Simona Masina

Abstract. Wind stress and turbulent heat fluxes are the major driving forces which modify the ocean dynamics and thermodynamics. In the NEMO ocean general circulation model, these turbulent air-sea fluxes (TASFs), which are components of the ocean model boundary conditions, can critically impact the simulated ocean characteristics. This paper investigates how the different bulk parametrizations to calculated turbulent air-sea fluxes in the NEMO4 (revision 12957) drives substantial differences in sea surface temperature (SST). Specifically, we study the contribution of different aspects and assumptions of the bulk parametrizations in driving the SST differences in NEMO global model configuration at ¼ degree of horizontal resolution. These include the use of the skin temperature instead of the bulk SST in the computation of turbulent heat flux components, the estimation of wind stress and the estimation of turbulent heat flux components which vary in each parametrization due to the different computation of the bulk transfer coefficients. The analysis of a set of short-term sensitivity experiments, where the only experimental change is related to one of the aspects of the bulk parametrizations, shows that parametrization-related SST differences are primarily sensitive to the wind stress differences across parametrizations and to the implementation of skin temperature in the computation of turbulent heat flux components. Moreover, in order to highlight the role of SST-turbulent heat flux negative feedback at play in ocean simulations, we compare the TASFs differences obtained using NEMO ocean model with the estimations from Brodeau et al. (2017), who compared the different bulk parametrizations using prescribed SST. Our estimations of turbulent heat flux differences between bulk parametrizations is weaker with respect to Brodeau et al. (2017) differences estimations.


Hereditas ◽  
2022 ◽  
Vol 159 (1) ◽  
Author(s):  
Li Xin Su ◽  
Yi Sun ◽  
Zhenfeng Wang ◽  
Deming Wang ◽  
Xitao Yang ◽  
...  

AbstractPIK3CA-related overgrowth spectrum (PROS) is a series of congenital, sporadic disorders that are associated with segmental overgrowth phenotypes and postzygotic, somatic gene mutations in the PIK3CA-ATK-mTOR pathway. The variability and overlapping phenotypes between PROS and other complex vascular malformations make the differential diagnosis confusing and challenging. PROS should be considered for the differential diagnosis with other complex vascular malformations and syndromes with a tissue overgrowth phenotype, such as Parkes-Weber syndrome (PWS).Herein, we diagnosed one unique clinically challenging case manifested as capillary malformation (CM), limb overgrowth, as well as increased skin temperature and peripheral venous dilatation of lower limb that indicated a potential fast-flow lesion. The patient was initially diagnosed with PWS. Contrary to the previous diagnosis, based on further MR imaging and digital subtraction angiography (DSA), which ruled out the existence of AVMs and AVFs, and molecular analysis with targeted next-generation sequencing (NGS) revealing a somatic PIK3CA mutation, we ultimately diagnosed that the patient had a unique form of PROS simulating PWS phenotypes. We suggest that it is important to propose the differential diagnosis of PWS and PROS, two diseases that share a common overgrowth phenotype. We recommended radiological diagnosis such as MRI, CT and DSA as well as further molecular diagnosis to provide more information for the assessment of vascular lesions and to further guide clinical treatment strategies.


2022 ◽  
Vol 41 (1) ◽  
Author(s):  
Tomonori Sawada ◽  
Hiroki Okawara ◽  
Daisuke Nakashima ◽  
Shuhei Iwabuchi ◽  
Morio Matsumoto ◽  
...  

Abstract Background Technological innovations have allowed the use of miniature apparatus that can easily control and program heat and cold stimulations using Peltier elements. The wearable thermo-device has a potential to be applied to conventional contrast bath therapy. This study aimed to examine the effects of alternating heat and cold stimulation (HC) using a wearable thermo-device on subjective and objective improvement of shoulder stiffness. Methods Twenty healthy young male individuals (20.3 ± 0.6 years) participated in this study. The interventions were randomly conducted under four conditions, including HC, heat stimulation, cold stimulation, and no stimulation on their bilateral trapezius muscle, after a 30-min typing task. Each intervention was administered at least 1 week apart. The analyzed limb was the dominant arm. Muscle hardness was assessed using a portable muscle hardness meter, as well as the skin temperature over the stimulated area. After each condition, the participants were asked for feedback regarding subjective improvement in refreshed feelings, muscle stiffness, and muscle fatigue using an 11-point numerical rating scale. Results With regard to muscle hardness, only the HC condition significantly decreased from 1.43 N to 1.37 N (d = 0.44, p < 0.05). Additionally, reduced muscle hardness in HC condition was associated with the degree of skin cooling during the intervention (cold max: r = 0.634, p < 0.01; cold change: r = −0.548, p < 0.05). Subjective improvement in refreshed feelings, muscle stiffness, and muscle fatigue was determined in the HC and heat stimulation conditions compared with the no stimulation condition (p < 0.01 and p < 0.05, respectively). Moreover, the HC condition showed significantly greater improvements in muscle stiffness and fatigue compared to the cold stimulation condition (p < 0.05). Conclusions The current study demonstrated that HC promoted not only better subjective symptoms, such as muscle stiffness and fatigue, but also lesser muscle hardness. Furthermore, an association was observed between the degree of skin temperature cooling and reduced muscle hardness during HC. Further investigations on the ratio and intensity of cooling should be conducted in the future to establish the optimal HC protocol for muscle stiffness or fatigue. Trial registration UMIN000040620. Registered 1 June 2020


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 169
Author(s):  
Marianna Halász ◽  
Jelka Geršak ◽  
Péter Bakonyi ◽  
Gabriella Oroszlány ◽  
András Koleszár ◽  
...  

The study aimed to analyze whether the high compression of unique, tight-fitting sportswear influences the clothing physiology comfort of the athlete. Three specific sportswear with different compression were tested on four subjects while they were running on a treadmill with increasing intensity. The compression effect of the sportswear on the body of the test persons, the temperature distribution of the subjects, and the intensity of their perspiration during running were determined. The results indicate that the compression effect exerted by the garments significantly influences the clothing physiology comfort of the athlete; a higher compression load leads to more intense sweating and higher skin temperature.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ricardo Schultz Martins ◽  
Phillip J. Wallace ◽  
Scott W. Steele ◽  
Jake S. Scott ◽  
Michael J. Taber ◽  
...  

Increases in body temperature from heat stress (i.e., hyperthermia) generally impairs cognitive function across a range of domains and complexities, but the relative contribution from skin versus core temperature changes remains unclear. Hyperthermia also elicits a hyperventilatory response that decreases the partial pressure of end-tidal carbon dioxide (PetCO2) and subsequently cerebral blood flow that may influence cognitive function. We studied the role of skin and core temperature along with PetCO2 on cognitive function across a range of domains. Eleven males completed a randomized, single-blinded protocol consisting of poikilocapnia (POIKI, no PetCO2 control) or isocapnia (ISO, PetCO2 maintained at baseline levels) during passive heating using a water-perfused suit (water temperature ~ 49°C) while middle cerebral artery velocity (MCAv) was measured continuously as an index of cerebral blood flow. Cognitive testing was completed at baseline, neutral core-hot skin (37.0 ± 0.2°C-37.4 ± 0.3°C), hot core-hot skin (38.6 ± 0.3°C-38.7 ± 0.2°C), and hot core-cooled skin (38.5 ± 0.3°C-34.7 ± 0.6°C). The cognitive test battery consisted of a detection task (psychomotor processing), 2-back task (working memory), set-shifting and Groton Maze Learning Task (executive function). At hot core-hot skin, poikilocapnia led to significant (both p &lt; 0.05) decreases in PetCO2 (∆−21%) and MCAv (∆−26%) from baseline, while isocapnia clamped PetCO2 (∆ + 4% from baseline) leading to a significantly (p = 0.023) higher MCAv (∆−18% from baseline) compared to poikilocapnia. There were no significant differences in errors made on any task (all p &gt; 0.05) irrespective of skin temperature or PetCO2 manipulation. We conclude that neither skin temperature nor PetCO2 maintenance significantly alter cognitive function during passive hyperthermia.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yaara Aharon-Rotman ◽  
John F. McEvoy ◽  
Christa Beckmann ◽  
Fritz Geiser

Torpor is a controlled reduction of metabolism and body temperature, and its appropriate use allows small birds to adapt to and survive challenging conditions. However, despite its great energy conservation potential, torpor use by passerine birds is understudied although they are small and comprise over half of extant bird species. Here, we first determined whether a free-living, small ∼20 g Australian passerine, the eastern yellow robin (Eopsaltria australis), expresses torpor by measuring skin temperature (Ts) as a proxy for body temperature. Second, we tested if skin temperature fluctuated in relation to ambient temperature (Ta). We found that the Ts of eastern yellow robins fluctuated during winter by 9.1 ± 3.9°C on average (average minimum Ts 30.1 ± 2.3°C), providing the first evidence of torpor expression in this species. Daily minimum Ts decreased with Ta, reducing the estimated metabolic rate by as much as 32%. We hope that our results will encourage further studies to expand our knowledge on the use of torpor in wild passerines. The implications of such studies are important because species with highly flexible energy requirements may have an advantage over strict homeotherms during the current increasing frequency of extreme and unpredictable weather events, driven by changing climate.


Author(s):  
Laura J. Elstub ◽  
Shimra J. Fine ◽  
Karl E. Zelik

Exoskeletons and exosuits (exos) are wearable devices that physically assist movement. User comfort is critically important for societal adoption of exos. Thermal comfort (a person’s satisfaction with their thermal environment) represents a key design challenge. Exos must physically attach/interface to the body to apply forces, and these interfaces inevitably trap some heat. It is envisioned that thermal comfort could be improved by designing mode-switching exo interfaces that temporarily loosen around a body segment when assistive forces are not being applied. To inform exo design, a case series study (N = 4) based on single-subject design principles was performed. Our objective was to assess individual responses to skin temperature and thermal comfort during physical activity with a Loose leg-sleeve interface compared with a Form-Fitting one, and immediately after a Form-Fitting sleeve switched to Loose. Skin under the Loose sleeve was 2–3 °C (4–6 °F) cooler after 25 min of physical activity, and two of four participants reported the Loose sleeve improved their thermal comfort. After completion of the physical activity, the Form-Fitting sleeve was loosened, causing a 2–4 °C (3–8 °F) drop in skin temperature underneath for all participants, and two participants to report slightly improved thermal comfort. These findings confirmed that an exo that can quickly loosen its interface when assistance is not required—and re-tighten when it is— has the potential to enhance thermal comfort for some individuals and environments. More broadly, this study demonstrates that mode-switching mechanisms in exos can do more than adjust physical assistance: they can also exploit thermodynamics and facilitate thermoregulation in a way that enhances comfort for exo users.


Author(s):  
Mohammad Keilani ◽  
Margarete Steiner ◽  
Richard Crevenna

Summary Purpose The aim of this systematic review was to focus on the effect of biofeedback on smoking cessation. Material and methods This review was conducted following the PRISMA guidelines. Peer-reviewed original articles including biofeedback and/or neurofeedback training as an intervention for smoking cessation were included. The PubMed, MEDLINE, Web of Science, Scopus, and Cochrane Library databases were screened for trials published up to July 2021. The effects on smoking rates and smoking behavior, and biofeedback/neurofeedback training measures are summarized here. Results In total, three articles fulfilled the inclusion criteria. The total Downs and Black checklist scores ranged from 11 to 23 points, showing that the articles were of poor to good methodological quality. The included studies were heterogeneous, both in terms of treatment protocols and in terms of outcome parameters. Pooling of data for a meta-analysis was not possible. Therefore, we were limited to describing the included studies. The included biofeedback study demonstrated that skin temperature training might improve the patients’ ability to raise their skin temperature aiming at stress alleviation. All three studies reported positive effects of biofeedback/neurofeedback in supporting smokers to quit. Furthermore, individualized electroencephalography neurofeedback training showed promising results in one study in modulating craving-related responses. Conclusion The results of the present review suggest that biofeedback/neurofeedback training might facilitate smoking cessation by changing behavioral outcomes. Although the investigated studies contained heterogeneous methodologies, they showed interesting approaches that could be further investigated and elaborated. To improve the scientific evidence, prospective randomized controlled trials are needed to investigate biofeedback/neurofeedback in clinical settings for smoking cessation.


Sign in / Sign up

Export Citation Format

Share Document