Convenient synthesis of anisotropic Fe3O4 nanorods by reverse co-precipitation method with magnetic field-assisted

2011 ◽  
Vol 65 (12) ◽  
pp. 1973-1975 ◽  
Author(s):  
Wei Zhang ◽  
Shaoyi Jia ◽  
Qian Wu ◽  
Jingyu Ran ◽  
Songhai Wu ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3717
Author(s):  
Jae-Young Jung ◽  
Soung-Soo Yi ◽  
Dong-Hyun Hwang ◽  
Chang-Sik Son

The precursor prepared by co-precipitation method was sintered at various temperatures to synthesize crystalline manganese tungstate (MnWO4). Sintered MnWO4 showed the best crystallinity at a sintering temperature of 800 °C. Rare earth ion (Dysprosium; Dy3+) was added when preparing the precursor to enhance the magnetic and luminescent properties of crystalline MnWO4 based on these sintering temperature conditions. As the amount of rare earth ions was changed, the magnetic and luminescent characteristics were enhanced; however, after 0.1 mol.%, the luminescent characteristics decreased due to the concentration quenching phenomenon. In addition, a composite was prepared by mixing MnWO4 powder, with enhanced magnetism and luminescence properties due to the addition of dysprosium, with epoxy. To one of the two prepared composites a magnetic field was applied to induce alignment of the MnWO4 particles. Aligned particles showed stronger luminescence than the composite sample prepared with unsorted particles. As a result of this, it was suggested that it can be used as phosphor and a photosensitizer by utilizing the magnetic and luminescent properties of the synthesized MnWO4 powder with the addition of rare earth ions.


2013 ◽  
Vol 838-841 ◽  
pp. 2306-2309
Author(s):  
Guang Hua Wang ◽  
Kun Chen ◽  
Wen Bing Li ◽  
Dong Wan ◽  
Qin Hu ◽  
...  

Magnetic modified organobentonite (Fe3O4/CTAB–Bent) was synthesized by chemical co-precipitation method in which CTAB–Bent was firstly achieved via ion–exchange.The composite materials have been characterized by powder X–ray diffraction (XRD), Fourier transform infrared spectroscopy (FT–IR) and Scanning electron microscopy (SEM) . The results revealed that basal spacing of bentonite was increased through organic modification and the Fe3O4 particles synthesized which covering the surfaces of bentonite .Compared with natural bentonite, the adsorption capacity of Fe3O4/CTAB–Bent for Orange II was greatly enhanced and can be easily separated from the reaction medium by an external magnetic field after the treatment.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2653
Author(s):  
Fang Chen ◽  
Xiaobing Liu ◽  
Zhenggui Li ◽  
Shengnan Yan ◽  
Hao Fu ◽  
...  

The rheological properties of ferrofluids are related to various applications, such as sealing and loudspeakers, and have therefore attracted widespread attention. However, the rheological properties and their influence on the mechanisms of perfluoropolyether oil (PFPE oil)-based ferrofluids are complicated and not clear. Here, a series of PFPE oil-based ferrofluids were synthesized via a chemical co-precipitation method, and their rheological properties were revealed, systematically. The results indicate that the prepared Zn-ferrite particles have an average size of 12.1 nm, within a range of 4–18 nm, and that the ferrofluids have excellent dispersion stability. The activity of the ferrofluids changes from Newtonian to non-Newtonian, then to solid-like with increasing w from 10 wt% to 45.5 wt%, owing to their variation in microstructures. The viscosity of the ferrofluids increases with increasing Mw (the molecular weight of base liquid PFPE oil polymer), attributed to the increase in entanglements between PFPE oil molecules. The magnetization temperature variation of Zn-ferrite nanoparticles and viscosity temperature variation of PFPE oil together contribute to the viscosity temperature change in ferrofluids. The viscosity of the ferrofluids basically remains unchanged when shear rate is above 50 s−1, with increasing magnetic field strength; however, it first increases and then levels off when the rate is under 10 s−1, revealing that the shear rate and magnetic field strength together affect viscosity. The viscosity and its alteration in Zn-ferrite/PFPE oil-based ferrofluids could be deduced through our work, which will be greatly significant in basic theoretical research and in various applications.


2018 ◽  
Vol 71 (11) ◽  
pp. 914
Author(s):  
Yanfang Xia ◽  
Min Liu ◽  
Duxin Li

Co0.76Cu0.74[Fe(CN)6]·7.5H2O was prepared as a powder by a chemical co-precipitation method. The powder X-ray diffraction patterns were indexed to the typical face-centred cubic structure with the lattice parameter a 10.55(2) Å. The temperature dependence of the χ−1 curve obeys the Curie–Weiss law (χ = C/(T – θ)) in the temperature range of 180–300 K. According to Curie–Weiss law, the calculated θ value is −54.82 K. In the paramagnetic state at 300 K, the effective magnetic moment (μeff = (8χT)1/2) is 3.58 μB per formula unit. The calculated theoretical effective magnetic moment is 4.06 μB. The magnetic field cooling measurements under a 200 Oe applied magnetic field show that the saturation magnetization value at 2 K of the complex Co0.76Cu0.74[Fe(CN)6]·7.5H2O is 1.528 emu g−1.


2005 ◽  
Vol 277-279 ◽  
pp. 1044-1048 ◽  
Author(s):  
Eun Hee Kim ◽  
Hyo Sook Lee ◽  
Hui Ping Shao

Nanostructured iron and cobalt ferrite particles were prepared from iron chloride and cobalt chloride, respectively, using the sonochemical method. The particles were compared with those synthesized using the co-precipitation method. The properties of the particles were characterized using various techniques, such as XRD, TEM, VSM and a SQUID magnetometer. The iron ferrite particles had an average particle size of about 15 nm and a magnetization value of 83 emu/g at a magnetic field of 50 kOe, while the particle size of cobalt ferrite was about 5 nm and its magnetization value was 33 emu/g at the same magnetic field.


2011 ◽  
Vol 691 ◽  
pp. 139-144 ◽  
Author(s):  
M. Santiago T. ◽  
H. Montiel ◽  
L.E. Hernández C. ◽  
G. Álvarez ◽  
Maricela Villanueva-Ibáñez ◽  
...  

We present a comparison between co-precipitation method and polyol mediated synthesis for obtaining sub-micrometric powders of Eu0.05Ca0.95MnO3manganite. The samples synthesized were characterized by XRD and SEM; where the compounds have a single phase with the proposed stoichiometry. Microwave absorption response in poly-crystalline Eu0.05Ca0.95MnO3samples that it is carried out by both methods, are compared. These measurements were carried out at X-band (9.4 GHz) with a dc magnetic field up to 6000 Gauss, at 300 K. Electron Paramagnetic Resonance (EPR) spectra show important differences between both samples, indicating that the processes of magnetic absorption and the temperatures of phase transition are sensitive to order/disorder local; that we associate with the preparation route.


2011 ◽  
Vol 418-420 ◽  
pp. 286-292
Author(s):  
Da Wei Hu ◽  
Yan Ming Wang

This paper utilized a novel oxidative co-precipitation method to synthesis hexagonal Fe3O4 nanometer particles, which assisted by a weakly magnetic field. The crystallinity, morphology, particle size distribution, compositions and magnetic properties of the as-prepared particles were investigated using powder X-ray diffraction (XRD), scanning electron microscopy (SEM), ultrasonic particle sizer (UPS), X-ray photoelectron spectra (XPS) and vibrating sample magnetometer (VSM). The formation mechanism of the hexagonal Fe3O4 nanometer particles, which assisted by a weakly magnetic field was also discussed. The results shown that the as-prepared hexagonal particles were purity magnetite (Fe3O4), and the weakly magnetic field could accelerate the phase transformation from goethite (α-FeOOH) to magnetite (Fe3O4), increase the particle size and uniform the morphology. The values of saturation magnetization (Ms) and coercivity (H) of the hexagonal magnetic particles are 71.05 emu•g-1 and 474.3 Oe, respectively, which contributed to the morphology anisotropy of the particles.


2018 ◽  
Vol 281 ◽  
pp. 906-911
Author(s):  
Zhi Li Zhang ◽  
Nan Nan Di ◽  
Le Bai ◽  
Yang Yang ◽  
De Cai Li

Magnetic fluid or called ferro-fluid is such kind of magnetic nanomaterials, which is stable of solid-liquid two phase colloidal solution composited by magnetic nanoparticles coated by surfactant and highly disperse in a carrier liquid. The basis of magnetic fluid widely applied mainly is due to their unique magnetic properties and rheological properties, which enable its action as intelligent control materials in the magnetic field so as to achieve the goal of magnetic liquid dynamic seal, magnetic damping vibration and so on. In our recent research, the water-based magnetic fluid was synthesized using a co-precipitation method and its magnetorheological properties were studied. During the process, the magnetorheological properties of stable water-based magnetic fluids were determined by magnetic rheometer. The results show that the shear-thinning behavior of magnetic fluids was observed both in the absence and presence of magnetic field. However, there was a remarkable magnetoviscous effect with magnetic field function and the unexpected variation of shear stress was related to the chain aggregation. Furthermore, the constitutive equation of water-based magnetic fluid at a low magnetic field was discussed.


Sign in / Sign up

Export Citation Format

Share Document