Finite Element Simulations Of Multi Stage Incremental Forming Process

2018 ◽  
Vol 5 (2) ◽  
pp. 3802-3810 ◽  
Author(s):  
Kurra Suresh ◽  
Srinivasa Prakash Regalla ◽  
Nitin Kotkundae
Author(s):  
A. Jalali ◽  
R. Hashemi ◽  
M. Rajabi ◽  
P. Tayebi

In this paper, forming limit diagram (FLD) of aluminum/brass two-layer sheets through an incremental forming process (ISF) was studied numerically and experimentally. At first, the two-layer aluminum 1050/brass (65% copper) sheets were fabricated using the roll bonding process. Also, the finite element simulations of the incremental forming process with ABAQUS software were utilized to predict the FLD. For this purpose, the criterion of the second derivative of the equivalent plastic strain was used to predict fracture. Finally, the numerical simulation results were compared with the experimental results. For instance, comparing experimental and numerical FLD0 values for the formed samples with forming angle 62.5-degree showed a 7% difference. However, the difference was negligible, and numerical simulation results could be used with an appropriate reliability coefficient. The effect of sheet arrangement towards tools was then investigated. It finds out from the experimental results that the formability of the Brass/Al (brass was up layer and aluminum was bottom layer) was more than the Al/Brass (aluminum is up layer and brass is bottom layer). In the following, the ISF parameters such as forming limit angle, step-down, and thickness distribution were investigated.


2017 ◽  
Vol 899 ◽  
pp. 272-277
Author(s):  
Hugo Dutra Gomes ◽  
Maria Carolina dos Santos Freitas ◽  
Luciano Pessanha Moreira ◽  
Flavia de Paula Vitoretti ◽  
Jose Adilson de Castro

The present study is primarily engaged in the implementation of the incremental stamping process in a computerized numeric control This paper presents two different approaches to this forming process, an experimental and other numerical. Experimental used by the computer numerical control to perform the printing process and performs numerical simulations of the process using the finite element method. Some parameters are analyzed in both approaches, such as product geometry effects, tool geometry, tool speed, tool path, contact conditions and mechanical properties of the materials.


2014 ◽  
Vol 626 ◽  
pp. 518-523
Author(s):  
C.P. Lai ◽  
Luen Chow Chan

The titanium tailor-welded blanks (Ti-TWBs) are being developed in different industries such as automobile and aerospace, combining the advantages of both tailor-welded blanks technology and titanium alloys. In recent decades, computer simulation of sheet metal forming processes has been employed increasingly over conventional production test and adjustment methodology to achieve the optimum and cost-effective operation procedures. Recently, certain amounts of theoretical analysis for the sheet metal forming process have been developed. However, these analyses could not be applied directly to the material under multi-stage forming process. Thus, some researchers have developed a damage-based model to predict the instability and failure of sheet metals, particularly for the above Ti-TWBs, with consideration of material damage under discontinuous or proportional loading strain paths. So far this model has been used and proved to be successful to predict formability of selected sheets of steel and aluminium alloy. However, the application of the damage-coupled model has yet to be extended to the Ti-TWBs under thermal multi-stage forming operation.The main objective of this paper is to investigate numerically the formability of Ti-TWBs under multi-stage forming process with experimental verification. Titanium alloy sheets (Ti-6Al-4V) in thickness of 0.7mm and 1.0mm were selected and laser-welded the specimen of Ti-TWBs. The model based on the damage mechanics is introduced to predict the thermal formability of Ti-TWBs with change of strain paths. In this study, the anisotropic damage model incorporate with the finite element codes and user-define material subroutine were developed to predict the formability of Ti-TWBs with change of strain paths. The mechanical properties and damage parameters of Ti-TWBs for the simulation were measured experimentally. The simulation of Ti-TWB under multi-stage forming process were then conducted and validated experimentally at similar forming conditions. The predicted results have been found to agree well with those obtained from the experiments. This analysis can be applied readily to design and manufacture TWB components or structures so as to satisfy the need of such market demands.


2007 ◽  
Vol 340-341 ◽  
pp. 773-778
Author(s):  
Y. Abe ◽  
J. Watanabe ◽  
Kenichiro Mori

A forming sequence of one-piece automobile steel wheels without welding was designed. In this forming process, the one-piece wheel was formed from a circular blank only by multi-stage stamping operations, and a deeply drawn cup was formed into the wheel. Two humps of the rim flange for fixing the tire were formed in the flaring and flanging stages. The humps of the rim in the opening and outer side were formed by buckling the inner flange of the rim, and by swelling the outer flange with an upper die having a short land, respectively. In addition, the number of stages was considerably reduced from 16 stages to only 9 stages by combining the deep drawing and ironing stages and by adding a holding die in the flaring stages. The forming sequence of the one-piece wheels was evaluated by both finite element simulation and miniature experiment.


2005 ◽  
Vol 14 (6-7) ◽  
pp. 633-651 ◽  
Author(s):  
Xiaobo Yu ◽  
Lin Ye ◽  
Yiu-Wing Mai ◽  
Bruce Cartwright ◽  
Damian McGuckin ◽  
...  

2011 ◽  
Vol 291-294 ◽  
pp. 282-285 ◽  
Author(s):  
Hao Han Zhang ◽  
Ming Zhe Li ◽  
Wen Zhi Fu ◽  
Xue Chen

Multi-Roll Stretch forming process is a new flexible process which is used for forming hyperbolic-degree surface pieces. Using the Multi-point flexible floating clamping system, the metal sheet can be more easily formed, and the flexibility can be much higher, which the ordinary floating clamping cannot have. A series of finite element simulations and experiments have been done for the process of forming saddle-shaped parts using Multi-Point flexible floating clamping system, and ordinary floating clamping system. The results show that the quality of the part formed using flexible floating clamping system is better.


Sign in / Sign up

Export Citation Format

Share Document