Synthesis, characterization and CO2 separation performance of novel PVA/PG/ZIF-8 mixed matrix membrane

2019 ◽  
Vol 572 ◽  
pp. 198-209 ◽  
Author(s):  
Mridusmita Barooah ◽  
Bishnupada Mandal
2018 ◽  
Vol 6 (7) ◽  
pp. 3151-3161 ◽  
Author(s):  
Yongqiang Gao ◽  
Zhihua Qiao ◽  
Song Zhao ◽  
Zhi Wang ◽  
Jixiao Wang

PEI-g-ZIF-8 presents appropriate porous structure, amino functionalized surface and improved interfacial compatibility with the polymer matrix to endow the MMMs with excellent gas separation performance.


2019 ◽  
Vol 1 (1) ◽  
pp. 10
Author(s):  
Indri Susanti

Membrane technology for gas separation applications are limited by a "trade-off" curve between permeability and selectivity. It show that permeability is high, selectivity obtained is low. This problem can be solved by preparation of Mixed-Matrix Membrane (MMMs) which can increase the value of permeability and selectivity. The MMMs with polysulfone polymers and zeolite fillers is more corresponding for gas separation. Addition of zeolite filler to polysulfone polymer in MMMs can improve the CO2 separation performance. In this review, mechanism of gas separation in MMMs was carried out in the application of CO2/CH4 gas separation. In addition, the effect of addition, size and pore of zeolite filler in MMMs for binary gas separation were also discussed in this review.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 371
Author(s):  
Siti Nur Alwani Shafie ◽  
Nik Abdul Hadi Md Nordin ◽  
Muhammad Roil Bilad ◽  
Nurasyikin Misdan ◽  
Norazlianie Sazali ◽  
...  

This study focuses on the effect of modified silica fillers by [EMIN][Tf2N] via physical adsorption on the CO2 separation performance of a mixed matrix membrane (MMM). The IL-modified silica was successfully synthesized as the presence of fluorine element was observed in both Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectrometer (XPS) analyses. The prepared MMMs with different loadings of the IL-modified silica were then compared with an unmodified silica counterpart and neat membrane. The morphology of IL-modified MMMs was observed to have insignificant changes, while polymer chains of were found to be slightly more flexible compared to their counterpart. At 2 bar of operating pressure, a significant increase in performance was observed with the incorporation of 3 wt% Sil-IL fillers compared to that of pure polycarbonate (PC). The permeability increased from 353 to 1151 Barrer while the CO2/CH4 selectivity increased from 20 to 76. The aforementioned increment also exceeded the Robeson upper bound. This indicates that the incorporation of fillers surface-modified with ionic liquid in an organic membrane is worth exploring for CO2 separation.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 194
Author(s):  
Xiuxiu Ren ◽  
Masakoto Kanezashi ◽  
Meng Guo ◽  
Rong Xu ◽  
Jing Zhong ◽  
...  

A new polyhedral oligomeric silsesquioxane (POSS) designed with eight –(CH2)3–NH–(CH2)2–NH2 groups (PNEN) at its apexes was used as nanocomposite uploading into 1,2-bis(triethoxysilyl)ethane (BTESE)-derived organosilica to prepare mixed matrix membranes (MMMs) for gas separation. The mixtures of BTESE-PNEN were uniform with particle size of around 31 nm, which is larger than that of pure BTESE sols. The characterization of thermogravimetric (TG) and gas permeance indicates good thermal stability. A similar amine-contained material of 3-aminopropyltriethoxysilane (APTES) was doped into BTESE to prepare hybrid membranes through a copolymerized strategy as comparison. The pore size of the BTESE-PNEN membrane evaluated through a modified gas-translation model was larger than that of the BTESE-APTES hybrid membrane at the same concentration of additions, which resulted in different separation performance. The low values of Ep(CO2)-Ep(N2) and Ep(N2) for the BTESE-PNEN membrane at a low concentration of PNEN were close to those of copolymerized BTESE-APTES-related hybrid membranes, which illustrates a potential CO2 separation performance by using a mixed matrix membrane strategy with multiple amine POSS as particles.


Sign in / Sign up

Export Citation Format

Share Document