Influence of strongly textured microstructure on the all-round shape memory effect of rapidly solidified Ni51Ti49 alloy

2017 ◽  
Vol 705 ◽  
pp. 273-281 ◽  
Author(s):  
Y.Y. Li ◽  
S.S. Cao ◽  
X. Ma ◽  
C.B. Ke ◽  
X.P. Zhang
2017 ◽  
Vol 62 (2) ◽  
pp. 1367-1370 ◽  
Author(s):  
Y.-W. Kim ◽  
T.W. Mukarati

AbstractNon-toxic Ti-Nb-Mo scaffolds were fabricated by sintering rapidly solidified alloy fibers for biomedical applications. Microstructure and martensitic transformation behaviors of the porous scaffolds were investigated by means of differential scanning calorimetric and X-ray diffraction. Theα″–βtransformation occurs in the as-solidified fiber and the sintered scaffolds. According to the compressive test of the sintered scaffolds with 75% porosity, they exhibit good superelasticity and strain recovery ascribed to the stress-induced martensitic transformation and the shape memory effect. Because of the high porosity of the scaffolds, an elastic modulus of 1.4 GPa, which matches well with that of cancellous bone, could be obtained. The austenite transformation finishing temperature of 77Ti-18Nb-5Mo alloy scaffolds is 5.1°C which is well below the human body temperature, and then all mechanical properties and shape memory effect of the porous 77Ti-18Nb-5Mo scaffolds are applicable for bon replacement implants.


2006 ◽  
Vol 47 (3) ◽  
pp. 615-618 ◽  
Author(s):  
Harunobu Tomita ◽  
Teiko Okazaki ◽  
Yasubumi Furuya

2010 ◽  
Vol 638-642 ◽  
pp. 2189-2194 ◽  
Author(s):  
Hisaaki Tobushi ◽  
Shunichi Hayashi ◽  
Y. Sugimoto ◽  
K. Date

The shape memory composite (SMC) with shape memory alloy (SMA) and shape memory polymer (SMP) was fabricated, and the two-way bending deformation and recovery force were investigated. The results obtained can be summarized as follows. (1) Two kinds of SMA tapes which show the shape memory effect and superelasticity were heat-treated to memorize the round shape, respectively. The shape-memorized round SMA tapes were sandwiched between the SMP sheets, and the SMC belt was fabricated. (2) The two-way bending deformation with an angle of 56 degrees is observed during heating and cooling. (3) If the SMC belt is heated and cooled by keeping the form, recovery force increases during heating and decreases during cooling.


2008 ◽  
Vol 59 ◽  
pp. 24-29 ◽  
Author(s):  
Yoichi Kishi ◽  
Zenjiro Yajima ◽  
Teiko Okazaki ◽  
Yasubumi Furuya ◽  
Manfred Wuttig

It is well known that FePd alloys are effective as a magneto-thermoelastic actuator material, because they have large magnetostriction and shape memory effect. In order to use the alloys for a micro-actuator, magnetic properties and microstructures have been examined as for rapidly solidified Fe-29.6 at% Pd alloy ribbons. The ribbons exhibit a large magnetostriction at room temperature and good shape memory effect. Magnetostriction and coercive force of the ribbons markedly depend on the direction of the applied magnetic field. Maximum values of magnetostriction and coercive force are obtained at θ = 85 degree (θ is the angle between the magnetic field and the ribbon plane). Relief effects corresponding to the formation of FCT martensite variants are observed on the grains. X-ray diffraction profile at room temperature shows that FCT martensitic phase and FCC parent phase coexist in the ribbon. Dense striations are observed in the TEM bright field images of FCT martensite plates. Selected area electron diffraction patterns revealed the striations to be thin twins.


Sign in / Sign up

Export Citation Format

Share Document