scholarly journals Constant mean curvature spacelike hypersurfaces in Lorentzian warped products and Calabi–Bernstein type problems

2014 ◽  
Vol 106 ◽  
pp. 57-69 ◽  
Author(s):  
Juan A. Aledo ◽  
Alfonso Romero ◽  
Rafael M. Rubio
1997 ◽  
Vol 49 (3) ◽  
pp. 337-345 ◽  
Author(s):  
Luis J. Alías ◽  
Alfonso Romero ◽  
Miguel Sánchez

2015 ◽  
Vol 23 (2) ◽  
pp. 259-277
Author(s):  
Yaning Wang ◽  
Ximin Liu

Abstract In this paper, by supposing a natural comparison inequality on the positive r-th mean curvatures of the hypersurface, we obtain some new Bernstein-type theorems for complete spacelike hypersurfaces immersed in a semi-Riemannian warped product of constant sectional curvature. Generalizing the above results, under a restriction on the sectional curvature or the Ricci curvature tensor of the fiber of a warped product, we also prove some new rigidity theorems in semi-Riemannian warped products. Our main results extend some recent Bernstein-type theorems proved in [12, 13, 14].


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Ning Zhang

In this paper, we obtain new parametric uniqueness results for complete constant weighted mean curvature hypersurfaces under suitable geometric assumptions in weighted warped products. Furthermore, we also prove very general Bernstein type results for the constant mean curvature equation for entire graphs in these ambient spaces.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Wenjie Wang ◽  
Ximin Liu

Complete spacelike hypersurfaces immersed in semi-Riemannian warped products are investigated. By using a technique according to Yau (1976) and a reasonable restriction on the mean curvature of the hypersurfaces, we obtain some new Bernstein-type theorems which extend some known results proved by Camargo et al. (2011) and Colares and Lima (2012).


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yaning Wang ◽  
Ximin Liu

By applying Omori-Yau maximal principal theory and supposing an appropriate restriction on the norm of gradient of height function, we obtain some new Bernstein-type theorems for complete spacelike hypersurfaces with nonpositive constant mean curvature immersed in a semi-Riemannian warped product. Furthermore, some applications of our main theorems for entire vertical graphs in Robertson-Walker spacetime and for hypersurfaces in hyperbolic space are given.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Juan A. Aledo ◽  
Rafael M. Rubio

We characterize the spacelike slices of a Lorentzian warped product as the only constant mean curvature spacelike surfaces under suitable geometrical and physical assumptions. As a consequence of our study, we derive a Bernstein-type result which widely improves and extends the state-of-the-art results in this setting.


2011 ◽  
Vol 151 (2) ◽  
pp. 271-282 ◽  
Author(s):  
ALMA L. ALBUJER ◽  
FERNANDA E. C. CAMARGO ◽  
HENRIQUE F. DE LIMA

AbstractIn this paper, as a suitable application of the well-known generalized maximum principle of Omori–Yau, we obtain uniqueness results concerning to complete spacelike hypersurfaces with constant mean curvature immersed in a Robertson–Walker (RW) spacetime. As an application of such uniqueness results for the case of vertical graphs in a RW spacetime, we also get non-parametric rigidity results.


Sign in / Sign up

Export Citation Format

Share Document