scholarly journals Complete spacelike hypersurfaces with positive r-th mean curvature in a semi-Riemannian warped product

2015 ◽  
Vol 23 (2) ◽  
pp. 259-277
Author(s):  
Yaning Wang ◽  
Ximin Liu

Abstract In this paper, by supposing a natural comparison inequality on the positive r-th mean curvatures of the hypersurface, we obtain some new Bernstein-type theorems for complete spacelike hypersurfaces immersed in a semi-Riemannian warped product of constant sectional curvature. Generalizing the above results, under a restriction on the sectional curvature or the Ricci curvature tensor of the fiber of a warped product, we also prove some new rigidity theorems in semi-Riemannian warped products. Our main results extend some recent Bernstein-type theorems proved in [12, 13, 14].

2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Wenjie Wang ◽  
Ximin Liu

Complete spacelike hypersurfaces immersed in semi-Riemannian warped products are investigated. By using a technique according to Yau (1976) and a reasonable restriction on the mean curvature of the hypersurfaces, we obtain some new Bernstein-type theorems which extend some known results proved by Camargo et al. (2011) and Colares and Lima (2012).


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yaning Wang ◽  
Ximin Liu

By applying Omori-Yau maximal principal theory and supposing an appropriate restriction on the norm of gradient of height function, we obtain some new Bernstein-type theorems for complete spacelike hypersurfaces with nonpositive constant mean curvature immersed in a semi-Riemannian warped product. Furthermore, some applications of our main theorems for entire vertical graphs in Robertson-Walker spacetime and for hypersurfaces in hyperbolic space are given.


Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6449-6459 ◽  
Author(s):  
Akram Ali ◽  
Siraj Uddin ◽  
Wan Othman ◽  
Cenap Ozel

In this paper, we establish some optimal inequalities for the squared mean curvature in terms warping functions of a C-totally real doubly warped product submanifold of a locally conformal almost cosymplectic manifold with a pointwise ?-sectional curvature c. The equality case in the statement of inequalities is also considered. Moreover, some applications of obtained results are derived.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Juan A. Aledo ◽  
Rafael M. Rubio

We characterize the spacelike slices of a Lorentzian warped product as the only constant mean curvature spacelike surfaces under suitable geometrical and physical assumptions. As a consequence of our study, we derive a Bernstein-type result which widely improves and extends the state-of-the-art results in this setting.


2011 ◽  
Vol 151 (2) ◽  
pp. 271-282 ◽  
Author(s):  
ALMA L. ALBUJER ◽  
FERNANDA E. C. CAMARGO ◽  
HENRIQUE F. DE LIMA

AbstractIn this paper, as a suitable application of the well-known generalized maximum principle of Omori–Yau, we obtain uniqueness results concerning to complete spacelike hypersurfaces with constant mean curvature immersed in a Robertson–Walker (RW) spacetime. As an application of such uniqueness results for the case of vertical graphs in a RW spacetime, we also get non-parametric rigidity results.


Author(s):  
Hironori Kumura

Let UB(p0; ρ1) × f MV be a cylindrically bounded domain in a warped product manifold := MB × fMV and let M be an isometrically immersed submanifold in . The purpose of this paper is to provide explicit radii of the geodesic balls of M which first exit from UB(p0; ρ1) × fMV for the case in which the mean curvature of M is sufficiently small and the lower bound of the Ricci curvature of M does not diverge to –∞ too rapidly at infinity.


1997 ◽  
Vol 49 (3) ◽  
pp. 337-345 ◽  
Author(s):  
Luis J. Alías ◽  
Alfonso Romero ◽  
Miguel Sánchez

2016 ◽  
Vol 27 (11) ◽  
pp. 1650089
Author(s):  
Shun Maeta

We consider a complete biharmonic submanifold [Formula: see text] in a Riemannian manifold with sectional curvature bounded from above by a non-negative constant [Formula: see text]. Assume that the mean curvature is bounded from below by [Formula: see text]. If (i) [Formula: see text], for some [Formula: see text], or (ii) the Ricci curvature of [Formula: see text] is bounded from below, then the mean curvature is [Formula: see text]. Furthermore, if [Formula: see text] is compact, then we obtain the same result without the assumption (i) or (ii). These are affirmative partial answers to Balmuş–Montaldo–Oniciuc conjecture.


Sign in / Sign up

Export Citation Format

Share Document