Investigation on boron transient enhanced diffusion induced by the advanced P+/N ultra-shallow junction fabrication processes

Author(s):  
F. Lallement ◽  
D. Lenoble
1998 ◽  
Vol 532 ◽  
Author(s):  
M. Kase ◽  
Y Kikuchi ◽  
H. Niwa ◽  
T. Kimura

ABSTRACTThis paper describes ultra shallow junction formation using 0.5 keV B+/BF2+ implantation, which has the advantage of a reduced channeling tail and no transient enhanced diffusion. In the case of l × 1014 cm−2, 0.5 keV BF2 implantation a junction depth of 19 nm is achieved after RTA at 950°C.


2013 ◽  
Vol 284-287 ◽  
pp. 98-102
Author(s):  
Hung Yu Chiu ◽  
Yean Kuen Fang ◽  
Feng Renn Juang

The carbon (C) co-implantation and advanced flash anneal were employed to form the ultra shallow junction (USJ) for future nano CMOS technology applications. The effects of the C co-implantation process on dopant transient enhanced diffusion (TED) of the phosphorus (P) doped nano USJ NMOSFETs were investigated in details. The USJ NMOSFETs were prepared by a foundry’s 55 nano CMOS technology. Various implantation energies and doses for both C and P ions were employed. Results show the suppression of the TED is strongly dependent on both C and P implantation conditions. Besides, the mechanisms of P TED and suppression by C ion co-implantation were illustrated comprehensively with schematic models.


1986 ◽  
Vol 71 ◽  
Author(s):  
Tom Sedgwick

AbstractRapid Thermal Processing (RTP) can minimize processing time and therefore minimize dopant motion during annealing of ion implanted junctions. In spite of the advantage of short time annealing using RTP, the formation of shallow B junctions is thwarted by channeling, transient enhanced diffusion and concentration enhanced diffusion effects all of which lead to deeper B profiles. Channeling and transient enhanced diffusion can be avoided by preamorphizing the silicon before the B implant. However, defects at the original amorphous/crystal boundary persist after annealing. Very low energy B implantation can lead to very shallow dopant profiles and in spite of channeling effects, offers an attractive potential shallow junction technology. In all of the shallow junction formation techniques RTP is required to achieve both high activation of the implanted species and minimal diffusion of the implanted dopant.


2000 ◽  
Author(s):  
K. Ohuchi ◽  
K. Adachi ◽  
A. Murakoshi ◽  
A. Hokazono ◽  
T. Kanemura ◽  
...  

2002 ◽  
Vol 31 (10) ◽  
pp. 999-1003 ◽  
Author(s):  
A. T. Fiory ◽  
S. G. Chawda ◽  
S. Madishetty ◽  
V. R. Mehta ◽  
N. M. Ravindra ◽  
...  

1997 ◽  
Vol 469 ◽  
Author(s):  
V. C. Venezia ◽  
T. E. Haynes ◽  
A. Agarwal ◽  
H. -J. Gossmann ◽  
D. J. Eaglesham

ABSTRACTThe diffusion of Sb and B markers has been studied in vacancy supersaturations produced by MeV Si implantation in float zone (FZ) silicon and bonded etch-back silicon-on-insulator (BESOI) substrates. MeV Si implantation produces a vacancy supersaturated near-surface region and an interstitial-rich region at the projected ion range. Transient enhanced diffusion (TED) of Sb in the near surface layer was observed as a result of a 2 MeV Si+, 1×1016/cm2, implant. A 4× larger TED of Sb was observed in BESOI than in FZ silicon, demonstrating that the vacancy supersaturation persists longer in BESOI than in FZ. B markers in samples with MeV Si implant showed a factor of 10× smaller diffusion relative to markers without the MeV Si+ implant. This data demonstrates that a 2 MeV Si+ implant injects vacancies into the near surface region.


Sign in / Sign up

Export Citation Format

Share Document