In-time motion adjustment in laser cladding manufacturing process for improving dimensional accuracy and surface finish of the formed part

2004 ◽  
Vol 36 (6) ◽  
pp. 477-483 ◽  
Author(s):  
Jichang Liu ◽  
Lijun Li
Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 580
Author(s):  
Francisco J. G. Silva

Though new manufacturing processes that revolutionize the landscape regarding the rapid manufacture of parts have recently emerged, the machining process remains alive and up-to-date in this context, always presenting itself as a manufacturing process with several variants and allowing for high dimensional accuracy and high levels of surface finish [...]


2020 ◽  
Vol 15 ◽  
Author(s):  
Lei Li ◽  
Yujun Cai ◽  
Guohe Li ◽  
Meng Liu

Background: As an important method of remanufacturing, laser cladding can be used to obtain the parts with specific shapes by stacking materials layer by layer. The formation mechanism of laser cladding determines the “Staircase effect”, which makes the surface quality can hardly meet the dimensional accuracy of the parts. Therefore, the subsequent machining must be performed to improve the dimensional accuracy and surface quality of cladding parts. Methods: In this paper, chip formation, cutting force, cutting temperature, tool wear, surface quality, and optimization of cutting parameters in the subsequent cutting of laser cladding layer are analyzed. Scholars have expounded and studied these five aspects but the cutting mechanism of laser cladding need further research. Results: The characteristics of cladding layer are similar to that of difficult to machine materials, and the change of parameters has a significant impact on the cutting performance. Conclusion: The research status of subsequent machining of cladding layers is summarized, mainly from the aspects of chip formation, cutting force, cutting temperature, tool wear, surface quality, and cutting parameters optimization. Besides, the existing problems and further developments of subsequent machining of cladding layers are pointed out. The efforts are helpful to promote the development and application of laser cladding remanufacturing technology.


2019 ◽  
Vol 26 (3) ◽  
pp. 473-483
Author(s):  
Muhammad Omar Shaikh ◽  
Ching-Chia Chen ◽  
Hua-Cheng Chiang ◽  
Ji-Rong Chen ◽  
Yi-Chin Chou ◽  
...  

Purpose Using wire as feedstock has several advantages for additive manufacturing (AM) of metal components, which include high deposition rates, efficient material use and low material costs. While the feasibility of wire-feed AM has been demonstrated, the accuracy and surface finish of the produced parts is generally lower than those obtained using powder-bed/-feed AM. The purpose of this study was to develop and investigate the feasibility of a fine wire-based laser metal deposition (FW-LMD) process for producing high-precision metal components with improved resolution, dimensional accuracy and surface finish. Design/methodology/approach The proposed FW-LMD AM process uses a fine stainless steel wire with a diameter of 100 µm as the additive material and a pulsed Nd:YAG laser as the heat source. The pulsed laser beam generates a melt pool on the substrate into which the fine wire is fed, and upon moving the X–Y stage, a single-pass weld bead is created during solidification that can be laterally and vertically stacked to create a 3D metal component. Process parameters including laser power, pulse duration and stage speed were optimized for the single-pass weld bead. The effect of lateral overlap was studied to ensure low surface roughness of the first layer onto which subsequent layers can be deposited. Multi-layer deposition was also performed and the resulting cross-sectional morphology, microhardness, phase formation, grain growth and tensile strength have been investigated. Findings An optimized lateral overlap of about 60-70% results in an average surface roughness of 8-16 µm along all printed directions of the X–Y stage. The single-layer thickness and dimensional accuracy of the proposed FW-LMD process was about 40-80 µm and ±30 µm, respectively. A dense cross-sectional morphology was observed for the multilayer stacking without any visible voids, pores or defects present between the layers. X-ray diffraction confirmed a majority austenite phase with small ferrite phase formation that occurs at the junction of the vertically stacked beads, as confirmed by the electron backscatter diffraction (EBSD) analysis. Tensile tests were performed and an ultimate tensile strength of about 700-750 MPa was observed for all samples. Furthermore, multilayer printing of different shapes with improved surface finish and thin-walled and inclined metal structures with a minimum achievable resolution of about 500 µm was presented. Originality/value To the best of the authors’ knowledge, this is the first study to report a directed energy deposition process using a fine metal wire with a diameter of 100 µm and can be a possible solution to improving surface finish and reducing the “stair-stepping” effect that is generally observed for wires with a larger diameter. The AM process proposed in this study can be an attractive alternative for 3D printing of high-precision metal components and can find application for rapid prototyping in a range of industries such as medical and automotive, among others.


2021 ◽  
Vol 233 ◽  
pp. 01069
Author(s):  
Hong ZHU ◽  
Gaoyan HOU

In selective laser sintering powder forming, the performance and dimensional accuracy of the formed part are affected by the process parameters. Different materials have different process parameters, and there is still no reference standard for PA materials. To solve this problem, in response to this problem, PA2200 material was selected, and the influence of scanning interval and scanning speed on the dimensional accuracy of the formed part was analyzed. Through theoretical analysis and experiments, the optimal process parameters were obtained. The best combination of parameters is a scanning speed of 4000mm/s, a scanning interval of 0.5mm, and the size of the molded part has a X-axis deviation -0.35%, a Y-axis deviation -0.4%, and a Z-axis deviation -0.25%.


2018 ◽  
Vol 97 (5-8) ◽  
pp. 2873-2885 ◽  
Author(s):  
Amaia Calleja ◽  
Gorka Urbikain ◽  
Haizea González ◽  
Iker Cerrillo ◽  
Roberto Polvorosa ◽  
...  

Procedia CIRP ◽  
2018 ◽  
Vol 72 ◽  
pp. 375-380 ◽  
Author(s):  
P. Stavropoulos ◽  
H. Alexopoulos ◽  
A. Papacharalampopoulos ◽  
D. Mourtzis

2019 ◽  
Vol 20 (3) ◽  
pp. 301
Author(s):  
Benoit Rosa ◽  
Maxence Bigerelle ◽  
Antoine Brient ◽  
Serge Samper

Choosing appropriate manufacturing processes to create functional surfaces is a challenging issue for some industrials. A specific surface finish can be obtained by different manufacturing processes, each of them having a different economic impact. Currently, no tool could guarantee the surface function through the choice of a manufacturing process and its associated operating parameters. This paper aims at discussing about a framework of models for selecting conventional or innovative manufacturing processes and their associated parameters with regards to surface topographies and textures. To achieve this, a concept of decomposition of database is introduced. Manufacturing processes such as, electro discharge machining, water jet machining (used for texturing surfaces), sandblasting and laser cladding are modelled. Finally, a concept that links such a database with computer aided design (CAD) software in order to integrate surfaces functionalities and manufacturing processes directly into the design step is discussed.


Sign in / Sign up

Export Citation Format

Share Document