scholarly journals Does pressure increase or decrease active gravitational mass density

2010 ◽  
Vol 685 (1) ◽  
pp. 8-11 ◽  
Author(s):  
Abhas Mitra
2015 ◽  
Vol 24 (08) ◽  
pp. 1550069 ◽  
Author(s):  
Homer G. Ellis

Giving up Einstein's assumption, implicit in his 1916 field equations, that inertial mass, even in its appearance as energy, is equivalent to active gravitational mass and therefore is a source of gravity allows revising the field equations to a form in which a positive cosmological constant is seen to (mis)represent a uniform negative net mass density of gravitationally attractive and gravitationally repulsive matter. Field equations with both positive and negative active gravitational mass densities of both primordial and continuously created matter, incorporated along with two scalar fields to 'relax the constraints' on the spacetime geometry, yield cosmological solutions that exhibit inflation, deceleration, coasting, acceleration, and a 'big bounce' instead of a 'big bang,' and provide good fits to a Hubble diagram of Type Ia supernovae data. The repulsive matter is identified as the back sides of the 'drainholes' introduced by the author in 1973 as solutions of those same field equations. Drainholes (prototypical examples of 'traversable wormholes') are topological tunnels in space which gravitationally attract on their front, entrance sides, and repel more strongly on their back, exit sides. The front sides serve both as the gravitating cores of the visible, baryonic particles of primordial matter and as the continuously created, invisible particles of the 'dark matter' needed to hold together the large-scale structures seen in the universe; the back sides serve as the misnamed 'dark energy' driving the current acceleration of the expansion of the universe. Formation of cosmic voids, walls, filaments and nodes is attributed to expulsion of drainhole entrances from regions populated by drainhole exits and accumulation of the entrances on boundaries separating those regions.


Formulae are given for the field of a sphere of constant gravitational mass density.


2008 ◽  
Vol 23 (35) ◽  
pp. 2979-2986
Author(s):  
MERAB GOGBERASHVILI

The warped solution of Einstein's equations corresponding to the spherical brane in five-dimensional AdS is considered. This metric represents interiors of black holes on both sides of the brane and can provide gravitational trapping of physical fields on the shell. It is found that the analytic form of the coordinate transformations from the Schwarzschild to co-moving frame that exists only in five dimensions. It is shown that in the static coordinates active gravitational mass of the spherical brane, in agreement with Tolman's formula, is negative, i.e. such objects are gravitationally repulsive.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Tom F. Neiser

When the Large Hadron Collider resumes operations in 2021, several experiments will directly measure the motion of antihydrogen in free fall for the first time. Our current understanding of the universe is not yet fully prepared for the possibility that antimatter has negative gravitational mass. This paper proposes a model of cosmology, where the state of high energy density of the big bang is created by the collapse of an antineutrino star that has exceeded its Chandrasekhar limit. To allow the first neutrino stars and antineutrino stars to form naturally from an initial quantum vacuum state, it helps to assume that antimatter has negative gravitational mass. This assumption may also be helpful to identify dark energy. The degenerate remnant of an antineutrino star can today have an average mass density that is similar to the dark energy density of the ΛCDM model. When in hydrostatic equilibrium, this antineutrino star remnant can emit isothermal cosmic microwave background radiation and accelerate matter radially. This model and the ΛCDM model are in similar quantitative agreement with supernova distance measurements. Therefore, this model is useful as a purely academic exercise and as preparation for possible future discoveries.


2012 ◽  
Vol 21 (11) ◽  
pp. 1242022 ◽  
Author(s):  
HOMER G. ELLIS

Albert Einstein's real "biggest blunder" was not the 1917 introduction into his gravitational field equations of a cosmological constant term Λ, rather was his failure in 1916 to distinguish between the entirely different concepts of active gravitational mass and passive gravitational mass. Had he made the distinction, and followed David Hilbert's lead in deriving field equations from a variational principle, he might have discovered a true (not a cut and paste) Einstein–Rosen bridge and a cosmological model that would have allowed him to predict, long before such phenomena were imagined by others, inflation, a big bounce (not a big bang), an accelerating expansion of the universe, dark matter, and the existence of cosmic voids, walls, filaments and nodes.


Sign in / Sign up

Export Citation Format

Share Document