scholarly journals Cova del Rinoceront (Castelldefels, Barcelona): a terrestrial record for the Last Interglacial period (MIS 5) in the Mediterranean coast of the Iberian Peninsula

2015 ◽  
Vol 114 ◽  
pp. 203-227 ◽  
Author(s):  
J. Daura ◽  
M. Sanz ◽  
R. Julià ◽  
D. García-Fernández ◽  
J.J. Fornós ◽  
...  
2014 ◽  
Vol 82 (3) ◽  
pp. 490-503 ◽  
Author(s):  
Shannon A. Mahan ◽  
Harrison J. Gray ◽  
Jeffrey S. Pigati ◽  
Jim Wilson ◽  
Nathaniel A. Lifton ◽  
...  

AbstractThe Ziegler Reservoir fossil site near Snowmass Village, Colorado (USA), provides a unique opportunity to reconstruct high-altitude paleoenvironmental conditions in the Rocky Mountains during the Last Interglacial Period. We used four different techniques to establish a chronological framework for the site. Radiocarbon dating of lake organics, bone collagen, and shell carbonate, and in situ cosmogenic 10Be and 26Al ages on a boulder on the crest of a moraine that impounded the lake suggest that the ages of the sediments that hosted the fossils are between ~140 ka and >45 ka. Uranium-series ages of vertebrate remains generally fall within these bounds, but extremely low uranium concentrations and evidence of open-system behavior limit their utility. Optically stimulated luminescence (OSL) ages (n = 18) obtained from fine-grained quartz maintain stratigraphic order, were replicable, and provide reliable ages for the lake sediments. Analysis of the equivalent dose (DE) dispersion of the OSL samples showed that the sediments were fully bleached prior to deposition and low scatter suggests that eolian processes were likely the dominant transport mechanism for fine-grained sediments into the lake. The resulting ages show that the fossil-bearing sediments span the latest part of Marine Oxygen Isotope Stage (MIS) 6, all of MIS 5 and MIS 4, and the earliest part of MIS 3.


2014 ◽  
Vol 82 (3) ◽  
pp. 473-476 ◽  
Author(s):  
Kirk R. Johnson ◽  
Ian M. Miller ◽  
Jeffrey S. Pigati ◽  

Studies of terrestrial biotic and environmental dynamics of Marine Oxygen Isotope Stage (MIS) 5, also called the Last Interglacial Period, provide insight into the effects of long-term climate change on Pleistocene ecosystems. In North America, however, there are relatively few fossil sites that definitively date to MIS 5. Even fewer contain multiple ecosystem components (vertebrates, invertebrates, plants) that have been studied in detail, and none are located at high elevation. Thus, our view of North American ecosystems during MIS 5 is, at best, an incomplete composite view, and alpine ecosystems are entirely undocumented.


1998 ◽  
Vol 17 (9-10) ◽  
pp. 963-985 ◽  
Author(s):  
Torben Fronval ◽  
Eystein Jansen ◽  
Haflidi Haflidason ◽  
Hans Petter Sejrup

2016 ◽  
Vol 12 (9) ◽  
pp. 1933-1948 ◽  
Author(s):  
Amaelle Landais ◽  
Valérie Masson-Delmotte ◽  
Emilie Capron ◽  
Petra M. Langebroek ◽  
Pepijn Bakker ◽  
...  

Abstract. The last interglacial period (LIG, ∼ 129–116 thousand years ago) provides the most recent case study of multimillennial polar warming above the preindustrial level and a response of the Greenland and Antarctic ice sheets to this warming, as well as a test bed for climate and ice sheet models. Past changes in Greenland ice sheet thickness and surface temperature during this period were recently derived from the North Greenland Eemian Ice Drilling (NEEM) ice core records, northwest Greenland. The NEEM paradox has emerged from an estimated large local warming above the preindustrial level (7.5 ± 1.8 °C at the deposition site 126 kyr ago without correction for any overall ice sheet altitude changes between the LIG and the preindustrial period) based on water isotopes, together with limited local ice thinning, suggesting more resilience of the real Greenland ice sheet than shown in some ice sheet models. Here, we provide an independent assessment of the average LIG Greenland surface warming using ice core air isotopic composition (δ15N) and relationships between accumulation rate and temperature. The LIG surface temperature at the upstream NEEM deposition site without ice sheet altitude correction is estimated to be warmer by +8.5 ± 2.5 °C compared to the preindustrial period. This temperature estimate is consistent with the 7.5 ± 1.8 °C warming initially determined from NEEM water isotopes but at the upper end of the preindustrial period to LIG temperature difference of +5.2 ± 2.3 °C obtained at the NGRIP (North Greenland Ice Core Project) site by the same method. Climate simulations performed with present-day ice sheet topography lead in general to a warming smaller than reconstructed, but sensitivity tests show that larger amplitudes (up to 5 °C) are produced in response to prescribed changes in sea ice extent and ice sheet topography.


2010 ◽  
Vol 7 (3) ◽  
pp. 3969-3999 ◽  
Author(s):  
C. Albrecht ◽  
H. Vogel ◽  
T. Hauffe ◽  
T. Wilke

Abstract. Ancient Lake Ohrid is probably of early Pleistocene or Pliocene origin and amongst the few lakes in the world harboring an outstanding degree of endemic biodiversity. Although there is a long history of evolutionary research in Lake Ohrid, particularly on molluscs, a mollusc fossil record has been missing up to date. For the first time, gastropod and bivalve fossils are reported from the basal, calcareous part of a 2.6 m long sediment succession (core Co1200) from the north-eastern part of Lake Ohrid. Electron spin resonance (ESR) dating of mollusc shells from the same stratigraphic level yielded an age of 130±28 ka. Lithofacies III sediments, i.e. a subdivision of the stratigraphic unit comprising the basal succession of core Co1200 between 181.5–263 cm appeared solid, grayish-white, and consisted almost entirely of silt-sized endogenic calcite (CaCO3>70%) and intact and broken mollusc shells. Here we compare the faunal composition of the thanatocoenosis with recent mollusc associations in Lake Ohrid. A total of 13 mollusc species (9 gastropod and 4 bivalve species) could be identified within Lithofacies III sediments. The value of sediment core fossils for reconstructing palaeoenvironmental settings was evaluated. The agreement between sediment and palaeontological proxies was tested. The combined findings of the ecological study and the sediment characteristics suggest deposition in a shallow water environment during the Last Interglacial period. We tested for major faunal changes since the Last Interglacial period and searched for signs of extinction events. The fossil fauna exclusively included species also found in the present fauna, i.e. no extinction events are evident for this site since the Last Interglacial. The thanatocoenosis showed the highest similarity with recent Intermediate Layer (5–25 m) mollusc assemblages. The demonstrated existence of a mollusc fossil record in Lake Ohrid sediment cores also has great significance for future deep drilling projects. It can be hoped that a more far reaching mollusc fossil record will then be obtained, enabling insight into the early evolutionary history of Lake Ohrid.


2009 ◽  
Vol 90 (5) ◽  
pp. 1051-1054 ◽  
Author(s):  
Eduardo López

During an investigation devoted to characterize all the Orbiniidae polychaete species present in the Iberian Peninsula, several individuals previously identified as Scoloplos armiger showed to actually belong to Scoloplos haasi, a species to date considered endemic from Israel. The comparison with the holotype deposited in the British Museum of Natural History confirmed the identification. This record of S. haasi is not only a new one for the western Mediterranean but also the first one out of its original locality, extending largely westwards the geographical range of the species.


Author(s):  
Hans Blumenberg

This chapter discusses Hans Blumenberg's essay “Advancing into Eternal Silence: A Century after the Sailing of the Fram” (1993). This essay was written three years before his death. It offers not just the philosophical reading of an episode in the history of polar expeditions ripe with significance, but draws on an anecdote to muse on the relationship between media-archaeology and nihilism. Blumenberg explains that humans are risky beings, and not just because they seek frontier-pushing adventures like the voyage adrift of the Fram. They are risky for the very reason that their biological origins lie in the narrow span of the last interglacial period, when they learned the ability to cope with life caught between the advancing and receding glaciers; the natural being was now pitted against nature.


Sign in / Sign up

Export Citation Format

Share Document