scholarly journals Iterative analysis of non-linear Swift-Hohenberg equations under nonsingular fractional order derivative

2021 ◽  
pp. 104080
Author(s):  
Israr Ahmad ◽  
Thabet Abdeljawad ◽  
Ibrahim Mahariq ◽  
Kamal Shah ◽  
Nabil Mlaiki ◽  
...  
2020 ◽  
Vol 9 (11) ◽  
pp. 9769-9780
Author(s):  
S.G. Khavale ◽  
K.R. Gaikwad

This paper is dealing the modified Ohm's law with the temperature gradient of generalized theory of magneto-thermo-viscoelastic for a thermally, isotropic and electrically infinite material with a spherical region using fractional order derivative. The general solution obtained from Laplace transform, numerical Laplace inversion and state space approach. The temperature, displacement and stresses are obtained and represented graphically with the help of Mathcad software.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Choonkil Park ◽  
R. I. Nuruddeen ◽  
Khalid K. Ali ◽  
Lawal Muhammad ◽  
M. S. Osman ◽  
...  

Abstract This paper aims to investigate the class of fifth-order Korteweg–de Vries equations by devising suitable novel hyperbolic and exponential ansatze. The class under consideration is endowed with a time-fractional order derivative defined in the conformable fractional derivative sense. We realize various solitons and solutions of these equations. The fractional behavior of the solutions is studied comprehensively by using 2D and 3D graphs. The results demonstrate that the methods mentioned here are more effective in solving problems in mathematical physics and other branches of science.


2012 ◽  
Vol 2012 ◽  
pp. 1-15
Author(s):  
Yang Liu ◽  
Zhang Weiguo

We investigate the existence of multiple positive solutions for a class of boundary value problems of nonlinear differential equation with Caputo’s fractional order derivative. The existence results are obtained by means of the Avery-Peterson fixed point theorem. It should be point out that this is the first time that this fixed point theorem is used to deal with the boundary value problem of differential equations with fractional order derivative.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Chernet Tuge Deressa ◽  
Gemechis File Duressa

AbstractWe consider a SEAIR epidemic model with Atangana–Baleanu fractional-order derivative. We approximate the solution of the model using the numerical scheme developed by Toufic and Atangana. The numerical simulation corresponding to several fractional orders shows that, as the fractional order reduces from 1, the spread of the endemic grows slower. Optimal control analysis and simulation show that the control strategy designed is operative in reducing the number of cases in different compartments. Moreover, simulating the optimal profile revealed that reducing the fractional-order from 1 leads to the need for quick starting of the application of the designed control strategy at the maximum possible level and maintaining it for the majority of the period of the pandemic.


Sign in / Sign up

Export Citation Format

Share Document