fractional orders
Recently Published Documents


TOTAL DOCUMENTS

303
(FIVE YEARS 144)

H-INDEX

24
(FIVE YEARS 6)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 165
Author(s):  
Zai-Yin He ◽  
Abderrahmane Abbes ◽  
Hadi Jahanshahi ◽  
Naif D. Alotaibi ◽  
Ye Wang

This research presents a new fractional-order discrete-time susceptible-infected-recovered (SIR) epidemic model with vaccination. The dynamical behavior of the suggested model is examined analytically and numerically. Through using phase attractors, bifurcation diagrams, maximum Lyapunov exponent and the 0−1 test, it is verified that the newly introduced fractional discrete SIR epidemic model vaccination with both commensurate and incommensurate fractional orders has chaotic behavior. The discrete fractional model gives more complex dynamics for incommensurate fractional orders compared to commensurate fractional orders. The reasonable range of commensurate fractional orders is between γ = 0.8712 and γ = 1, while the reasonable range of incommensurate fractional orders is between γ2 = 0.77 and γ2 = 1. Furthermore, the complexity analysis is performed using approximate entropy (ApEn) and C0 complexity to confirm the existence of chaos. Finally, simulations were carried out on MATLAB to verify the efficacy of the given findings.


2021 ◽  
Author(s):  
Shrideh Al-Omari ◽  
Mohammed Alabedalhadi ◽  
Mohammed Al-Smadi ◽  
Shaher Momani

Abstract This paper investigates the novel soliton solutions of the coupled fractional system of the resonant Davey-Stewartson equations. The fractional derivatives are considered in terms of conformable sense. Accordingly, we utilize a complex traveling wave transformation to reduce the proposed system to an integer-order system of ordinary differential equations. The phase portrait and the equilibria of the obtained integer-order ordinary differential system will be studied. Using suitable mathematical assumptions, the new types of bright, singular, and dark soliton solutions are derived and established in view of the hyperbolic, trigonometric, and rational functions of the governing system. To achieve this, illustrative examples of the fractional Davey-Stewartson system are provided to demonstrate the feasibility and reliability of the procedure used in this study. The trajectory solutions of the traveling waves are shown explicitly and graphically. The effect of conformable derivatives on behavior of acquired solutions for different fractional orders is also discussed. By comparing the proposed method with the other existing methods, the results show that the execute of this method is concise, simple, and straightforward. The results are useful for obtaining and explaining some new soliton phenomena.


2021 ◽  
Vol 6 (1) ◽  
pp. 7
Author(s):  
Hari Mohan Srivastava ◽  
Daba Meshesha Gusu ◽  
Pshtiwan Othman Mohammed ◽  
Gidisa Wedajo ◽  
Kamsing Nonlaopon ◽  
...  

Here, in this article, we investigate the solution of a general family of fractional-order differential equations by using the spectral Tau method in the sense of Liouville–Caputo type fractional derivatives with a linear functional argument. We use the Chebyshev polynomials of the second kind to develop a recurrence relation subjected to a certain initial condition. The behavior of the approximate series solutions are tabulated and plotted at different values of the fractional orders ν and α. The method provides an efficient convergent series solution form with easily computable coefficients. The obtained results show that the method is remarkably effective and convenient in finding solutions of fractional-order differential equations.


Author(s):  
Zain Ul Abadin Zafar ◽  
Samina Younas ◽  
Sumera Zaib ◽  
Cemil Tunç

The main purpose of this research is to use a fractional-mathematical model including Atangana–Baleanu derivatives to explore the clinical associations and dynamical behavior of the tuberculosis. Herein, we used a lately introduced fractional operator having Mittag-Leffler kernel. The existence and inimitability problems to the relevant model were examined through the fixed-point theory. To verify the significance of the arbitrary fractional-order derivative, numerical outcomes were explored from the biological and mathematical viewpoints using the values of model parameters. The graphical simulations show the comparison of the predictor–corrector method (PCM) and Caputo method (CM) for different fractional orders and the results indicated the significant preference of PCM over CM.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3302
Author(s):  
Naveed Ishtiaq Chaudhary ◽  
Muhammad Asif Zahoor Raja ◽  
Zeshan Aslam Khan ◽  
Khalid Mehmood Cheema ◽  
Ahmad H. Milyani

Recently, a quasi-fractional order gradient descent (QFGD) algorithm was proposed and successfully applied to solve system identification problem. The QFGD suffers from the overparameterization problem and results in estimating the redundant parameters instead of identifying only the actual parameters of the system. This study develops a novel hierarchical QFDS (HQFGD) algorithm by introducing the concepts of hierarchical identification principle and key term separation idea. The proposed HQFGD is effectively applied to solve the parameter estimation problem of input nonlinear autoregressive with exogeneous noise (INARX) system. A detailed investigation about the performance of HQFGD is conducted under different disturbance conditions considering different fractional orders and learning rate variations. The simulation results validate the better performance of the HQFGD over the standard counterpart in terms of estimation accuracy, convergence speed and robustness.


Fractals ◽  
2021 ◽  
Author(s):  
SHAHER MOMANI ◽  
R. P. CHAUHAN ◽  
SUNIL KUMAR ◽  
SAMIR HADID

The purpose of this research is to explore the spread dynamics of a novel coronavirus outbreak, or 2019-nCOV via a fractional approach of type fractal-fractional (FF) derivative. We considered the FF approach in sense of the Atangana–Baleanu derivative for the system 2019-nCOV. In the FF operator, when we choose fractional-order one, we achieve the fractal model and when choosing fractal order one then we obtain a fractional model and while considering both the operators together we obtain the fractal-fractional model. The obtained results show via graphics for the different collections of fractal and fractional orders. The graphical results show the new operator impacts on a practical situation in a more visual way.


Mathematica ◽  
2021 ◽  
Vol 63 (86) (2) ◽  
pp. 254-267
Author(s):  
Mohamed Houas ◽  
◽  
Zoubir Dahmani ◽  
Erhan Set ◽  
◽  
...  

We study the existence and uniqueness of solutions for integro-differential equations involving two fractional orders. By using the Banach’s fixed point theorem, Leray-Schauder’s nonlinear alternative and Leray-Schauder’s degree theory, the existence and uniqueness of solutions are obtained. Some illustrative examples are also presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jingjing Zeng ◽  
Xujun Yang ◽  
Lu Wang ◽  
Xiaofeng Chen

The robust asymptotical stability and stabilization for a class of fractional-order complex-valued neural networks (FCNNs) with parametric uncertainties and time delay are considered in this paper. It is worth noting that our system combines complex numbers, uncertain parameters, time delay, and fractional orders, which is universal in practical application. Using the theorem of homeomorphism, the sufficient condition of the existence and uniqueness of the equilibrium point for the system is obtained. Then, the sufficient criteria of robust asymptotical stability and stabilization for the addressed models are established, respectively. Finally, we give two numerical examples to verify the feasibility and effectiveness of the theoretical results.


2021 ◽  
Vol 5 (4) ◽  
pp. 209
Author(s):  
Saima Rashid ◽  
Rehana Ashraf ◽  
Fatimah S. Bayones

This article investigates the semi-analytical method coupled with a new hybrid fuzzy integral transform and the Adomian decomposition method via the notion of fuzziness known as the Elzaki Adomian decomposition method (briefly, EADM). In addition, we apply this method to the time-fractional Swift–Hohenberg equation (SHe) with various initial conditions (IC) under gH-differentiability. Some aspects of the fuzzy Caputo fractional derivative (CFD) with the Elzaki transform are presented. Moreover, we established the general formulation and approximate findings by testing examples in series form of the models under investigation with success. With the aid of the projected method, we establish the approximate analytical results of SHe with graphical representations of initial value problems by inserting the uncertainty parameter 0≤℘≤1 with different fractional orders. It is expected that fuzzy EADM will be powerful and accurate in configuring numerical solutions to nonlinear fuzzy fractional partial differential equations arising in physical and complex structures.


Sign in / Sign up

Export Citation Format

Share Document