A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data

2015 ◽  
Vol 165 ◽  
pp. 234-248 ◽  
Author(s):  
Bruce Pengra ◽  
Jordan Long ◽  
Devendra Dahal ◽  
Stephen V. Stehman ◽  
Thomas R. Loveland
2021 ◽  
Author(s):  
Myroslava Lesiv ◽  
Dmitry Schepaschenko ◽  
Martina Dürauer ◽  
Marcel Buchhorn ◽  
Ivelina Georgieva ◽  
...  

<p>Spatially explicit information on forest management at a global scale is critical for understanding the current status of forests for sustainable forest management and restoration. Whereas remotely sensed based datasets, developed by applying ML and AI algorithms, can successfully depict tree cover and other land cover types, it has not yet been used to depict untouched forest and different degrees of forest management. We show for the first time that with sufficient training data derived from very high-resolution imagery a differentiation within the tree cover class of various levels of forest management is possible.</p><p>In this session, we would like to present our approach for labeling forest related training data by using Geo-Wiki application (https://www.geo-wiki.org/). Moreover, we would like to share a new open global training data set on forest management we collected from a series of Geo-Wiki campaigns. In February 2019, we organized an expert workshop to (1) discuss the variety of forest management practices that take place in different parts of the world; (2) generalize the definitions for the application at global scale; (3) finalize the Geo-Wiki interface for the crowdsourcing campaigns; and (4) build a data set of control points (or the expert data set), which we used later to monitor the quality of the crowdsourced contributions by the volunteers. We involved forest experts from different regions around the world to explore what types of forest management information could be collected from visual interpretation of very high-resolution images from Google Maps and Microsoft Bing, in combination with Sentinel time series and Normalized Difference Vegetation Index (NDVI) profiles derived from Google Earth Engine (GEE). Based on the results of this analysis, we expanded these campaigns by involving a broader group of participants, mainly people recruited from remote sensing, geography and forest research institutes and universities.</p><p>In total, we collected forest data for approximately 230 000 locations globally. These data are of sufficient density and quality and therefore could be used in many ML and AI applications for forests at regional and local scale.  We also provide an example of ML application, a remotely sensed based global forest management map at a 100 m resolution (PROBA-V) for the year 2015. It includes such classes as intact forests, forests with signs of human impact, including clear cuts and logging, replanted forest, woody plantations with a rotation period up to 15 years, oil palms and agroforestry. The results of independent statistical validation show that the map’s overall accuracy is 81%.</p>


2011 ◽  
Vol 4 (sup1) ◽  
pp. 91-106 ◽  
Author(s):  
T. Kemper ◽  
M. Jenerowicz ◽  
L. Gueguen ◽  
D. Poli ◽  
P. Soille

Author(s):  
Z. Kandylakis ◽  
K. Karantzalos

In order to exploit efficiently very high resolution satellite multispectral data for precision agriculture applications, validated methodologies should be established which link the observed reflectance spectra with certain crop/plant/fruit biophysical and biochemical quality parameters. To this end, based on concurrent satellite and field campaigns during the veraison period, satellite and in-situ data were collected, along with several grape samples, at specific locations during the harvesting period. These data were collected for a period of three years in two viticultural areas in Northern Greece. After the required data pre-processing, canopy reflectance observations, through the combination of several vegetation indices were correlated with the quantitative results from the grape/must analysis of grape sampling. Results appear quite promising, indicating that certain key quality parameters (like brix levels, total phenolic content, brix to total acidity, anthocyanin levels) which describe the oenological potential, phenolic composition and chromatic characteristics can be efficiently estimated from the satellite data.


2017 ◽  
Vol 43 (3) ◽  
pp. 1486
Author(s):  
K. Nikolakopoulos ◽  
P. Tsompos

In the frame of the “Urban Geology” project of IGME a lot of remote sensing applications were carried out: DSMs creation and accuracy verification, orthorectification of very high resolution satellite data, data fusion, multitemporal and multisensor image analysis, land cover and land use change detection e.t.c. The applications that took place in the pilot case of Nafplio are presented in this study


Geosciences ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 479 ◽  
Author(s):  
Karel Pavelka ◽  
Jaroslav Šedina ◽  
Eva Matoušková

Currently, satellite images can be used to document historical or archaeological sites in areas that are distant, dangerous, or expensive to visit, and they can be used instead of basic fieldwork in several cases. Nowadays, they have final resolution on 35–50 cm, which can be limited for searching of fine structures. Results using the analysis of very high resolution (VHR) satellite data and super resolution data from drone on an object nearby Palpa, Peru are discussed in this article. This study is a part of Nasca project focused on using satellite data for documentation and the analysis of the famous geoglyphs in Peru near Palpa and Nasca, and partially on the documentation of other historical objects. The use of drone shows advantages of this technology to achieve high resolution object documentation and analysis, which provide new details. The documented site was the “Pista” geoglyph. Discovering of unknown geoglyphs (a bird, a guinea pig, and other small drawings) was quite significant in the area of the well-known geoglyph. The new data shows many other details, unseen from the surface or from the satellite imagery, and provides the basis for updating current knowledge and theories about the use and construction of geoglyphs.


Proceedings ◽  
2018 ◽  
Vol 2 (7) ◽  
pp. 339 ◽  
Author(s):  
Shridhar D. Jawak ◽  
Sagar F. Wankhede ◽  
Alvarinho J. Luis

2020 ◽  
Vol 12 (11) ◽  
pp. 1701
Author(s):  
Carlos Román-Cascón ◽  
Marie Lothon ◽  
Fabienne Lohou ◽  
Nitu Ojha ◽  
Olivier Merlin ◽  
...  

The use of soil moisture (SM) measurements from satellites has grown in recent years, fostering the development of new products at high resolution. This opens the possibility of using them for certain applications that were normally carried out using in situ data. We investigated this hypothesis through two main analyses using two high-resolution satellite-based soil moisture (SBSM) products that combined microwave with thermal and optical data: (1) The Disaggregation based on Physical And Theoretical scale Change (DISPATCH) and, (2) The Soil Moisture Ocean Salinity-Barcelona Expert Center (SMOS-BEC Level 4). We used these products to analyse the SM differences among pixels with contrasting vegetation. This was done through the comparison of the SM measurements from satellites and the measurements simulated with a simple antecedent precipitation index (API) model, which did not account for the surface characteristics. Subsequently, the deviation of the SM from satellite with respect to the API model (bias) was analysed and compared for contrasting land use categories. We hypothesised that the differences in the biases of the varied categories could provide information regarding the water retention capacity associated with each type of vegetation. From the satellite measurements, we determined how the SM depended on the tree cover, i.e., the denser the tree cover, the higher the SM. However, in winter periods with light rain events, the tree canopy could dampen the moistening of the soil through interception and conducted higher SM in the open areas. This evolution of the SM differences that depended on the characteristics of each season was observed both from satellite and from in situ measurements taken beneath a tree and in grass on the savanna landscape. The agreement between both types of measurements highlighted the potential of the SBSM products to investigate the SM of each type of vegetation. We found that the results were clearer for DISPATCH, whose data was not smoothed spatially as it was in SMOS-BEC. We also tested whether the relationships between SM and evapotranspiration could be investigated using satellite data. The answer to this question was also positive but required removing the unrealistic high-frequency SM oscillations from the satellite data using a low pass filter. This improved the performance scores of the products and the agreement with the results from the in situ data. These results demonstrated the possibility of using SM data from satellites to substitute ground measurements for the study of land–atmosphere interactions, which encourages efforts to improve the quality and resolution of these measurements.


Sign in / Sign up

Export Citation Format

Share Document