A cost-effective design procedure for cold-formed lipped channels under uniform compression

2009 ◽  
Vol 47 (11) ◽  
pp. 1281-1294 ◽  
Author(s):  
Osama Bedair
2021 ◽  
Author(s):  
Hugo Miguel Silva ◽  
Leandro Fernandes ◽  
Hugo Luís Rodrigues ◽  
João Tiago Noversa ◽  
António José Pontes

Abstract Because of recent advancements in additive manufacturing, fabricating conformal cooling channels (CCCs) has become easier and more economical. In the injection molding process, CCCs provide higher cooling performance than standard (straight drilled) channels. The major reason for this is that CCCs may follow the courses of the molded geometry, whereas typical channels created using traditional machining processes cannot. Using CCCs can reduce thermal strains and warpage while also improving cycle time and achieving a more uniform temperature distribution. CCC, on the other hand, has a more complicated design procedure than traditional channels. Simulations using computer-aided engineering (CAE) are critical for achieving an effective and cost-effective design. This article compares two ANSYS modules for the purpose of validating results. It can be inferred that the two modules produce similar results for models with fine mesh. As a result, the ANSYS module to work on should be chosen depending on the job's goal as well as the CAD geometry's complexity.


Author(s):  
Roger Hitchin

Policies to reduce carbon emissions are leading to substantial changes in the demand for electricity and to the structure of electricity supply systems, which will alter the cost structure of electricity supply. This can be expected to result in corresponding changes to the price structure faced by customers. This note is an initial exploration of how possible new price structures may impact on HVAC system and building design and use. Changes in the price structure of electricity supply (separately from changes in price levels) can significantly affect the cost-effective design and operation of building services systems; especially of heating and cooling systems. The nature and implications of these changes can have important implications for future system design and operation.


2000 ◽  
Vol 11 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Qiao Chunming ◽  
Mei Yousong ◽  
Yoo Myungsik ◽  
Zhang Xijun

Sign in / Sign up

Export Citation Format

Share Document