scholarly journals AVE protein expression and visceral endoderm cell behavior during anterior–posterior axis formation in mouse embryos: Asymmetry in OTX2 and DKK1 expression

2015 ◽  
Vol 402 (2) ◽  
pp. 175-191 ◽  
Author(s):  
Hideharu Hoshino ◽  
Go Shioi ◽  
Shinichi Aizawa
2000 ◽  
Vol 148 (3) ◽  
pp. 567-578 ◽  
Author(s):  
Joerg Huelsken ◽  
Regina Vogel ◽  
Volker Brinkmann ◽  
Bettina Erdmann ◽  
Carmen Birchmeier ◽  
...  

The anterior-posterior axis of the mouse embryo is defined before formation of the primitive streak, and axis specification and subsequent anterior development involves signaling from both embryonic ectoderm and visceral endoderm. Τhe Wnt signaling pathway is essential for various developmental processes, but a role in anterior-posterior axis formation in the mouse has not been previously established. β-Catenin is a central player in the Wnt pathway and in cadherin-mediated cell adhesion. We generated β-catenin–deficient mouse embryos and observed a defect in anterior-posterior axis formation at embryonic day 5.5, as visualized by the absence of Hex and Hesx1 and the mislocation of cerberus-like and Lim1 expression. Subsequently, no mesoderm and head structures are generated. Intercellular adhesion is maintained since plakoglobin substitutes for β-catenin. Our data demonstrate that β-catenin function is essential in anterior-posterior axis formation in the mouse, and experiments with chimeric embryos show that this function is required in the embryonic ectoderm.


Development ◽  
1998 ◽  
Vol 125 (15) ◽  
pp. 2837-2846 ◽  
Author(s):  
A. Gonzalez-Reyes ◽  
D. St Johnston

Gurken signals from the oocyte to the adjacent follicle cells twice during Drosophila oogenesis; first to induce posterior fate, thereby polarising the anterior-posterior axis of the future embryo and then to induce dorsal fate and polarise the dorsal-ventral axis. Here we show that Gurken induces two different follicle cell fates because the follicle cells at the termini of the egg chamber differ in their competence to respond to Gurken from the main-body follicle cells in between. By removing the putative Gurken receptor, Egfr, in clones of cells, we show that Gurken signals directly to induce posterior fate in about 200 cells, defining a terminal competence domain that extends 10–11 cell diameters from the pole. Furthermore, small clones of Egfr mutant cells at the posterior interpret their position with respect to the pole and differentiate as the appropriate anterior cell type. Thus, the two terminal follicle cell populations contain a symmetric prepattern that is independent of Gurken signalling. These results suggest a three-step model for the anterior-posterior patterning of the follicular epithelium that subdivides this axis into at least five distinct cell types. Finally, we show that Notch plays a role in both the specification and patterning of the terminal follicle cells, providing a possible explanation for the defect in anterior-posterior axis formation caused by Notch and Delta mutants.


Nature ◽  
2003 ◽  
Vol 421 (6921) ◽  
pp. 379-384 ◽  
Author(s):  
Sophie G. Martin ◽  
Daniel St Johnston

2013 ◽  
Vol 27 (2) ◽  
pp. 131-144 ◽  
Author(s):  
Ryuji Hiramatsu ◽  
Toshiki Matsuoka ◽  
Chiharu Kimura-Yoshida ◽  
Sung-Woong Han ◽  
Kyoko Mochida ◽  
...  

2021 ◽  
Author(s):  
Helene Doerflinger ◽  
Vitaly Zimyanin ◽  
Daniel St Johnston

The Drosophila anterior-posterior (AP) axis is specified at mid-oogenesis when Par-1 kinase is recruited to the posterior cortex of the oocyte, where it polarises the microtubule cytoskeleton to define where the axis determinants, bicoid and oskar mRNAs localise. This polarity is established in response to an unknown signal from the follicle cells, but how this occurs is unclear. Here we show that the myosin chaperone, Unc-45 and Non-Muscle Myosin II (MyoII) are required in the germ line upstream of Par-1 in polarity establishment. Furthermore, the Myosin regulatory Light Chain (MRLC) is di-phosphorylated at the oocyte posterior in response to the follicle cell signal, inducing longer pulses of myosin contractility at the posterior and increased cortical tension. Over-expression of MRLC-T21A that cannot be di-phosphorylated or acute treatment with the Myosin light chain kinase inhibitor ML-7 abolish Par-1 localisation, indicating that posterior of MRLC di-phosphorylation is essential for polarity. Thus, asymmetric myosin activation polarizes the anterior-posterior axis by recruiting and maintaining Par-1 at the posterior cortex. This raises an intriguing parallel with AP axis formation in C. elegans where MyoII is also required to establish polarity, but functions to localize the anterior PAR proteins rather than PAR-1.


Development ◽  
1999 ◽  
Vol 126 (20) ◽  
pp. 4499-4511 ◽  
Author(s):  
A. Perea-Gomez ◽  
W. Shawlot ◽  
H. Sasaki ◽  
R.R. Behringer ◽  
S. Ang

Recent embryological and genetic experiments have suggested that the anterior visceral endoderm and the anterior primitive streak of the early mouse gastrula function as head- and trunk-organising centers, respectively. Here, we report that HNF3beta and Lim1 are coexpressed in both organising centers suggesting synergistic roles of these genes in regulating organiser functions and hence axis development in the mouse embryo. To investigate this possibility, we generated compound HNF3beta and Lim1 mutant embryos. An enlarged primitive streak and a lack of axis formation were observed in HNF3beta (−)(/)(−);Lim1(−)(/)(−), but not in single homozygous mutant embryos. Chimera experiments indicate that the primary defect in these double homozygous mutants is due to loss of activity of HNF3beta and Lim1 in the visceral endoderm. Altogether, these data provide evidence that these genes function synergistically to regulate organiser activity of the anterior visceral endoderm. Moreover, HNF3beta (−)(/)(−);Lim1(−)(/)(−) mutant embryos also exhibit defects in mesoderm patterning that are likely due to lack of specification of anterior primitive streak cells.


Sign in / Sign up

Export Citation Format

Share Document