HNF3beta and Lim1 interact in the visceral endoderm to regulate primitive streak formation and anterior-posterior polarity in the mouse embryo

Development ◽  
1999 ◽  
Vol 126 (20) ◽  
pp. 4499-4511 ◽  
Author(s):  
A. Perea-Gomez ◽  
W. Shawlot ◽  
H. Sasaki ◽  
R.R. Behringer ◽  
S. Ang

Recent embryological and genetic experiments have suggested that the anterior visceral endoderm and the anterior primitive streak of the early mouse gastrula function as head- and trunk-organising centers, respectively. Here, we report that HNF3beta and Lim1 are coexpressed in both organising centers suggesting synergistic roles of these genes in regulating organiser functions and hence axis development in the mouse embryo. To investigate this possibility, we generated compound HNF3beta and Lim1 mutant embryos. An enlarged primitive streak and a lack of axis formation were observed in HNF3beta (−)(/)(−);Lim1(−)(/)(−), but not in single homozygous mutant embryos. Chimera experiments indicate that the primary defect in these double homozygous mutants is due to loss of activity of HNF3beta and Lim1 in the visceral endoderm. Altogether, these data provide evidence that these genes function synergistically to regulate organiser activity of the anterior visceral endoderm. Moreover, HNF3beta (−)(/)(−);Lim1(−)(/)(−) mutant embryos also exhibit defects in mesoderm patterning that are likely due to lack of specification of anterior primitive streak cells.

Development ◽  
2002 ◽  
Vol 129 (14) ◽  
pp. 3455-3468 ◽  
Author(s):  
Dominic P. Norris ◽  
Jane Brennan ◽  
Elizabeth K. Bikoff ◽  
Elizabeth J. Robertson

The TGFβ-related growth factor Nodal governs anteroposterior (AP) and left-right (LR) axis formation in the vertebrate embryo. A conserved intronic enhancer (ASE), containing binding sites for the fork head transcription factor Foxh1, modulates dynamic patterns of Nodal expression during early mouse development. This enhancer is responsible for early activation of Nodal expression in the epiblast and visceral endoderm, and at later stages governs asymmetric expression during LR axis formation. We demonstrate ASE activity is strictly Foxh1 dependent. Loss of this autoregulatory enhancer eliminates transcription in the visceral endoderm and decreases Nodal expression in the epiblast, but causes surprisingly discrete developmental abnormalities. Thus lowering the level of Nodal signaling in the epiblast disrupts both orientation of the AP axis and specification of the definitive endoderm. Targeted removal of the ASE also dramatically reduces left-sided Nodal expression, but the early events controlling LR axis specification are correctly initiated. However loss of the ASE disrupts Lefty2 (Leftb) expression and causes delayed Pitx2 expression leading to late onset, relatively minor LR patterning defects. The feedback loop is thus essential for maintenance of Nodal signals that selectively regulate target gene expression in a temporally and spatially controlled fashion in the mouse embryo.


2003 ◽  
Vol 358 (1436) ◽  
pp. 1351-1358 ◽  
Author(s):  
Elizabeth J. Robertson ◽  
Dominic P. Norris ◽  
Jane Brennan ◽  
Elizabeth K. Bikoff

Prior to gastrulation the mouse embryo exists as a symmetrical cylinder consisting of three tissue layers. Positioning of the future anterior–posterior axis of the embryo occurs through coordinated cell movements that rotate a pre–existing proximal–distal (P–D) axis. Overt axis formation becomes evident when a discrete population of proximal epiblast cells become induced to form mesoderm, initiating primitive streak formation and marking the posterior side of the embryo. Over the next 12–24 h the primitive streak gradually elongates along the posterior side of the epiblast to reach the distal tip. The most anterior streak cells comprise the ‘organizer’ region and include the precursors of the so–called ‘axial mesendoderm’, namely the anterior definitive endoderm and prechordal plate mesoderm, as well as those cells that give rise to the morphologically patent node. Signalling pathways controlled by the transforming growth factor–β ligand nodal are involved in orchestrating the process of axis formation. Embryos lacking nodal activity arrest development before gastrulation, reflecting an essential role for nodal in establishing P–D polarity by generating and maintaining the molecular pattern within the epiblast, extraembryonic ectoderm and the visceral endoderm. Using a genetic strategy to manipulate temporal and spatial domains of nodal expression reveals that the nodal pathway is also instrumental in controlling both the morphogenetic movements required for orientation of the final axis and for specification of the axial mesendoderm progenitors.


2014 ◽  
Vol 369 (1657) ◽  
pp. 20130546 ◽  
Author(s):  
Matthew J. Stower ◽  
Shankar Srinivas

The elaboration of anterior–posterior (A–P) pattern is one of the earliest events during development and requires the precisely coordinated action of several players at the level of molecules, cells and tissues. In mammals, it is controlled by a specialized population of migratory extraembryonic epithelial cells, the anterior visceral endoderm (AVE). The AVE is a signalling centre that is responsible for several important patterning events during early development, including specifying the orientation of the A–P axis and the position of the heart with respect to the brain. AVE cells undergo a characteristic stereotypical migration which is crucial to their functions.


2014 ◽  
Vol 28 (24) ◽  
pp. 2764-2777 ◽  
Author(s):  
Tatiana Omelchenko ◽  
M. Angeles Rabadan ◽  
Rocío Hernández-Martínez ◽  
Joaquim Grego-Bessa ◽  
Kathryn V. Anderson ◽  
...  

2000 ◽  
Vol 148 (3) ◽  
pp. 567-578 ◽  
Author(s):  
Joerg Huelsken ◽  
Regina Vogel ◽  
Volker Brinkmann ◽  
Bettina Erdmann ◽  
Carmen Birchmeier ◽  
...  

The anterior-posterior axis of the mouse embryo is defined before formation of the primitive streak, and axis specification and subsequent anterior development involves signaling from both embryonic ectoderm and visceral endoderm. Τhe Wnt signaling pathway is essential for various developmental processes, but a role in anterior-posterior axis formation in the mouse has not been previously established. β-Catenin is a central player in the Wnt pathway and in cadherin-mediated cell adhesion. We generated β-catenin–deficient mouse embryos and observed a defect in anterior-posterior axis formation at embryonic day 5.5, as visualized by the absence of Hex and Hesx1 and the mislocation of cerberus-like and Lim1 expression. Subsequently, no mesoderm and head structures are generated. Intercellular adhesion is maintained since plakoglobin substitutes for β-catenin. Our data demonstrate that β-catenin function is essential in anterior-posterior axis formation in the mouse, and experiments with chimeric embryos show that this function is required in the embryonic ectoderm.


2006 ◽  
Vol 123 (4) ◽  
pp. 288-296 ◽  
Author(s):  
Lucy Richardson ◽  
Maria-Elena Torres-Padilla ◽  
Magdalena Zernicka-Goetz

PLoS ONE ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. e17620 ◽  
Author(s):  
Daniel W. Stuckey ◽  
Aida Di Gregorio ◽  
Melanie Clements ◽  
Tristan A. Rodriguez

Sign in / Sign up

Export Citation Format

Share Document