Focused Ion Beam Fabrication of Micro-Mechanical Parts — Machining Characteristics of Polycrystalline Silicon and Computer Simulation of Profile Changes of Patterns

CIRP Annals ◽  
1990 ◽  
Vol 39 (1) ◽  
pp. 205-208 ◽  
Author(s):  
Iwao Miyamoto ◽  
Norio Taniguchi
2006 ◽  
Vol 983 ◽  
Author(s):  
Kim M. Archuleta ◽  
David P. Adams ◽  
Michael J. Vasile ◽  
Julia E. Fulghum

AbstractMedium energy (30 keV) focused gallium ion beam exposure of silicon results in a compressive in-plane stress with a magnitude as large as 0.4 GPa. Experiments involve uniform irradiation of thin polysilicon microcantilevers (200 micron length) over a range of dose from 1 x 1016 to 2 x 1018 ions/cm2. The radii of curvature of microcantilevers are measured using white light interferometry before and after each exposure. The residual stress is determined from these radii and other measured properties using Stoney's equation. The large residual stress is attributed to ion beam damage, microstructural changes and implantation.


2012 ◽  
Vol 706-709 ◽  
pp. 671-676
Author(s):  
Kohei Morishita ◽  
S. Ochiai ◽  
H. Okuda ◽  
Toshihiro Ishikawa ◽  
M. Sato

For description of the mechanical performance of SiC/SiC composites and for safety design for practical use, it is needed to reveal the degradation mechanism especially of fiber under the oxygen atmosphere. In the present work, the fracture behavior and microstructure of the polycrystalline silicon carbide fiber exposed in air at 1173-1873 K for 20 and 3.6 ks were studied with monofilament tensile test, microstructure observation and fracture toughness determination test using newly developed FIB(focused-ion-beam)-method.


CIRP Annals ◽  
1988 ◽  
Vol 37 (1) ◽  
pp. 171-174 ◽  
Author(s):  
Iwao Miyamoto ◽  
Sam T. Davies ◽  
David J. Whitehouse

Author(s):  
John F. Walker ◽  
J C Reiner ◽  
C Solenthaler

The high spatial resolution available from TEM can be used with great advantage in the field of microelectronics to identify problems associated with the continually shrinking geometries of integrated circuit technology. In many cases the location of the problem can be the most problematic element of sample preparation. Focused ion beams (FIB) have previously been used to prepare TEM specimens, but not including using the ion beam imaging capabilities to locate a buried feature of interest. Here we describe how a defect has been located using the ability of a FIB to both mill a section and to search for a defect whose precise location is unknown. The defect is known from electrical leakage measurements to be a break in the gate oxide of a field effect transistor. The gate is a square of polycrystalline silicon, approximately 1μm×1μm, on a silicon dioxide barrier which is about 17nm thick. The break in the oxide can occur anywhere within that square and is expected to be less than 100nm in diameter.


2002 ◽  
Vol 733 ◽  
Author(s):  
Brock McCabe ◽  
Steven Nutt ◽  
Brent Viers ◽  
Tim Haddad

AbstractPolyhedral Oligomeric Silsequioxane molecules have been incorporated into a commercial polyurethane formulation to produce nanocomposite polyurethane foam. This tiny POSS silica molecule has been used successfully to enhance the performance of polymer systems using co-polymerization and blend strategies. In our investigation, we chose a high-temperature MDI Polyurethane resin foam currently used in military development projects. For the nanofiller, or “blend”, Cp7T7(OH)3 POSS was chosen. Structural characterization was accomplished by TEM and SEM to determine POSS dispersion and cell morphology, respectively. Thermal behavior was investigated by TGA. Two methods of TEM sample preparation were employed, Focused Ion Beam and Ultramicrotomy (room temperature).


2002 ◽  
Vol 719 ◽  
Author(s):  
Myoung-Woon Moon ◽  
Kyang-Ryel Lee ◽  
Jin-Won Chung ◽  
Kyu Hwan Oh

AbstractThe role of imperfections on the initiation and propagation of interface delaminations in compressed thin films has been analyzed using experiments with diamond-like carbon (DLC) films deposited onto glass substrates. The surface topologies and interface separations have been characterized by using the Atomic Force Microscope (AFM) and the Focused Ion Beam (FIB) imaging system. The lengths and amplitudes of numerous imperfections have been measured by AFM and the interface separations characterized on cross sections made with the FIB. Chemical analysis of several sites, performed using Auger Electron Spectroscopy (AES), has revealed the origin of the imperfections. The incidence of buckles has been correlated with the imperfection length.


2018 ◽  
Author(s):  
C.S. Bonifacio ◽  
P. Nowakowski ◽  
M.J. Campin ◽  
M.L. Ray ◽  
P.E. Fischione

Abstract Transmission electron microscopy (TEM) specimens are typically prepared using the focused ion beam (FIB) due to its site specificity, and fast and accurate thinning capabilities. However, TEM and high-resolution TEM (HRTEM) analysis may be limited due to the resulting FIB-induced artifacts. This work identifies FIB artifacts and presents the use of argon ion milling for the removal of FIB-induced damage for reproducible TEM specimen preparation of current and future fin field effect transistor (FinFET) technologies. Subsequently, high-quality and electron-transparent TEM specimens of less than 20 nm are obtained.


2018 ◽  
Author(s):  
Sang Hoon Lee ◽  
Jeff Blackwood ◽  
Stacey Stone ◽  
Michael Schmidt ◽  
Mark Williamson ◽  
...  

Abstract The cross-sectional and planar analysis of current generation 3D device structures can be analyzed using a single Focused Ion Beam (FIB) mill. This is achieved using a diagonal milling technique that exposes a multilayer planar surface as well as the cross-section. this provides image data allowing for an efficient method to monitor the fabrication process and find device design errors. This process saves tremendous sample-to-data time, decreasing it from days to hours while still providing precise defect and structure data.


Sign in / Sign up

Export Citation Format

Share Document