AEROSOL PRODUCTION IN THE UPPER TROPOSPHERE

2001 ◽  
Vol 32 ◽  
pp. 1047-1048
Author(s):  
C.F. CLEMENT ◽  
I.J. FORD ◽  
C.H. TWOHY
Keyword(s):  
2020 ◽  
Vol 12 (23) ◽  
pp. 3946
Author(s):  
Pasquale Sellitto ◽  
Silvia Bucci ◽  
Bernard Legras

Clouds in the tropics have an important role in the energy budget, atmospheric circulation, humidity, and composition of the tropical-to-global upper-troposphere–lower-stratosphere. Due to its non-sun-synchronous orbit, the Cloud–Aerosol Transport System (CATS) onboard the International Space Station (ISS) provided novel information on clouds from space in terms of overpass time in the period of 2015–2017. In this paper, we provide a seasonally resolved comparison of CATS characterization of high clouds (between 13 and 18 km altitude) in the tropics with well-established CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation) data, both in terms of clouds’ occurrence and cloud optical properties (optical depth). Despite the fact that cloud statistics for CATS and CALIOP are generated using intrinsically different local overpass times, the characterization of high clouds occurrence and optical properties in the tropics with the two instruments is very similar. Observations from CATS underestimate clouds occurrence (up to 80%, at 18 km) and overestimate the occurrence of very thick clouds (up to 100% for optically very thick clouds, at 18 km) at higher altitudes. Thus, the description of stratospheric overshoots with CATS and CALIOP might be different. While this study hints at the consistency of CATS and CALIOP clouds characterizaton, the small differences highlighted in this work should be taken into account when using CATS for estimating cloud properties and their variability in the tropics.


2011 ◽  
Vol 4 (10) ◽  
pp. 2273-2292 ◽  
Author(s):  
S. Schweitzer ◽  
G. Kirchengast ◽  
V. Proschek

Abstract. LEO-LEO infrared-laser occultation (LIO) is a new occultation technique between Low Earth Orbit (LEO) satellites, which applies signals in the short wave infrared spectral range (SWIR) within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO) method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity) and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms) of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We conclude that the set of SWIR channels proposed for implementing the LMIO method (Kirchengast and Schweitzer, 2011) provides adequate sensitivity to accurately retrieve eight trace species of key importance to climate and atmospheric chemistry (H2O, CO2, 13CO2, C18OO, CH4, N2O, O3, CO) in the upper troposphere/lower stratosphere region outside clouds under all atmospheric conditions. Two further species (HDO, H218O) can be retrieved in the upper troposphere.


2021 ◽  
Vol 13 (10) ◽  
pp. 1939
Author(s):  
Tao Xian ◽  
Gaopeng Lu ◽  
Hongbo Zhang ◽  
Yongping Wang ◽  
Shaolin Xiong ◽  
...  

The thermal structure of the environmental atmosphere associated with Terrestrial Gamma-ray Flashes (TGFs) is investigated with the combined observations from several detectors (FERMI, RHESSI, and Insight-HXMT) and GNSS-RO (SAC-C, COSMIC, GRACE, TerraSAR-X, and MetOp-A). The geographic distributions of TGF-related tropopause altitude and climatology are similar. The regional TGF-related tropopause altitude in Africa and the Caribbean Sea is 0.1–0.4 km lower than the climatology, whereas that in Asia is 0.1–0.2 km higher. Most of the TGF-related tropopause altitudes are slightly higher than the climatology, while some of them have a slightly negative bias. The subtropical TGF-producing thunderstorms are warmer in the troposphere and have a colder and higher tropopause over land than the ocean. There is no significant land–ocean difference in the thermal structure for the tropical TGF-producing thunderstorms. The TGF-producing thunderstorms have a cold anomaly in the middle and upper troposphere and have stronger anomalies than the deep convection found in previous studies.


1999 ◽  
Vol 26 (20) ◽  
pp. 3069-3072 ◽  
Author(s):  
B. E. Anderson ◽  
W. R. Cofer ◽  
J. Crawford ◽  
G. L. Gregory ◽  
S. A. Vay ◽  
...  
Keyword(s):  

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jiali Luo ◽  
Jiayao Song ◽  
Hongying Tian ◽  
Lei Liu ◽  
Xinlei Liang

We use ERA-Interim reanalysis, MLS observations, and a trajectory model to examine the chemical transport and tracers distribution in the Upper Troposphere and Lower Stratosphere (UTLS) associated with an east-west oscillation case of the anticyclone in 2016. The results show that the spatial distribution of water vapor (H2O) was more consistent with the location of the anticyclone than carbon monoxide (CO) at 100 hPa, and an independent relative high concentration center was only found in H2O field. At 215 hPa, although the anticyclone center also migrated from the Tibetan Mode (TM) to the Iranian Mode (IM), the relative high concentration centers of both tracers were always colocated with regions where upward motion was strong in the UTLS. When the anticyclone migrated from the TM, air within the anticyclone over Tibetan Plateau may transport both westward and eastward but was always within the UTLS. The relative high concentration of tropospheric tracers within the anticyclone in the IM was from the east and transported by the westward propagation of the anticyclone rather than being lifted from surface directly. Air within the relative high geopotential height centers over Western Pacific was partly from the main anticyclone and partly from lower levels.


2005 ◽  
Vol 22 (1) ◽  
pp. 18-29 ◽  
Author(s):  
Ulrich Leiterer ◽  
Horst Dier ◽  
Dagmar Nagel ◽  
Tatjana Naebert ◽  
Dietrich Althausen ◽  
...  

Abstract Routine radiosonde relative humidity (RH) measurements are not reliable as they are presently used in the global upper-air network. The new Lindenberg measuring and evaluation method, which provides RH profile measurements with an accuracy of ±1% RΗ in the temperature range from 35° to −70°C near the tropical tropopause is described. This Standardized Frequencies (FN) method uses a thin-film capacitive polymer sensor of a modified RS90-H Humicap radiosonde. These research humidity reference radiosondes (FN sondes) are used to develop a correction method for operational RS80-A Humicap humidity profiles. All steps of correction and quality control for RS80-A radiosondes are shown: ground-check correction, time-lag and temperature-dependent correction, and the recognition of icing during the ascent. The results of a statistical comparison between FN sondes and RS80-A sondes are presented. Corrected humidity data of operational RS80-A sondes used in Lindenberg (4 times daily) show no bias when compared to FN radiosondes and have an uncertainty of about ±3% RH at the 1 σ or 68% confidence level from 1000 to about 150 hPa. Only a small dry bias of at most −2% RH remains in the lowest part of the boundary layer (up to 500-m height). Finally, some examples of corrected RS80-A RH profiles in cirrus clouds validated by lidar backscattering profiles in a region of the intertropical convergence (Maldive Islands) are demonstrated. The soundings indicate that ice-saturated and ice-supersaturated air above 10-km height were connected with cirrus clouds in all 47 investigated cases, and, second, that the corrected RS80-A RH profiles also provide good quality information on water vapor in the upper troposphere.


1997 ◽  
Vol 28 ◽  
pp. S65-S66 ◽  
Author(s):  
F. Arnold ◽  
K.H. Wohlfrom ◽  
J. Schneider ◽  
M. Klemm ◽  
T. Stilp ◽  
...  

1989 ◽  
Vol 67 (5) ◽  
pp. 889-906 ◽  
Author(s):  
Koji Yamazaki ◽  
Kikuo Okada ◽  
Yasunobu Iwasaka

2015 ◽  
Vol 54 (1) ◽  
pp. 106-116 ◽  
Author(s):  
Yu Wang ◽  
Hong-Qing Wang ◽  
Lei Han ◽  
Yin-Jing Lin ◽  
Yan Zhang

AbstractThis study was designed to provide basic information for the improvement of storm nowcasting. According to the mean direction deviation of storm movement, storms were classified into three types: 1) steady storms (S storms, extrapolated efficiently), 2) unsteady storms (U storms, extrapolated poorly), and 3) transitional storms (T storms). The U storms do not fit the linear extrapolation processes because of their unsteady movements. A 6-yr warm-season radar observation dataset was used to highlight and analyze the differences between U storms and S storms. The analysis included geometric features, dynamic factors, and environmental parameters. The results showed that storms with the following characteristics changed movement direction most easily in the Beijing–Tianjin region: 1) smaller storm area, 2) lower thickness (echo-top height minus base height), 3) lower movement speed, 4) weaker updrafts and the maximum value located in the mid- and upper troposphere, 5) storm-relative vertical wind profiles dominated by directional shear instead of speed shear, 6) lower relative humidity in the mid- and upper troposphere, and 7) higher surface evaporation and ground roughness.


Sign in / Sign up

Export Citation Format

Share Document