scholarly journals A role for the C2 domain of factor VIII in binding to von Willebrand factor

1994 ◽  
Vol 269 (15) ◽  
pp. 11601-11605
Author(s):  
E.L. Saenko ◽  
M. Shima ◽  
K.J. Rajalakshmi ◽  
D. Scandella
1996 ◽  
Vol 76 (05) ◽  
pp. 749-754 ◽  
Author(s):  
Suzuki Suzuki ◽  
Morio Arai ◽  
Kagehiro Amano ◽  
Kazuhiko Kagawa ◽  
Katsuyuki Fukutake

SummaryIn order to clarify the potential role of von Willebrand factor (vWf) in attenuating the inactivation of factor VIII (fVIII) by those antibodies with C2 domain specificity, we investigated a panel of 14 human antibodies to fVIII. Immunoblotting analysis localized light chain (C2 domain) epitopes for four cases, heavy chain (A2 domain) epitopes in five cases, while the remaining five cases were both light and heavy chains. The inhibitor titer was considerably higher for Kogenate, a recombinant fVIII concentrate, than for Haemate P, a fVIII/vWf complex concentrate, in all inhibitor plasmas that had C2 domain specificity. In five inhibitor plasmas with A2 domain specificity and in five with both A2 and C2 domain specificities, Kogenate gave titers similar to or lower than those with Haemate P. The inhibitory effect of IgG of each inhibitor plasma was then compared with recombinant fVIII and its complex with vWf. When compared to the other 10 inhibitor IgGs, IgG concentration, which inhibited 50% of fVIII activity (IC50), was remarkably higher for the fVIII/vWf complex than for fVIII in all the inhibitor IgGs that had C2 domain reactivity. Competition of inhibitor IgG and vWf for fVIII binding was observed in an ELISA system. In 10 inhibitors that had C2 domain reactivity, the dose dependent inhibition of fVIII-vWf complex formation was observed, while, in the group of inhibitors with A2 domain specificity, there was no inhibition of the complex formation except one case. We conclude that a subset of fVIII inhibitors, those that bind to C2 domain determinants, are less inhibitory to fVIII when it is complexed with vWf that binds to overlapping region in the C2 domain.


2003 ◽  
Vol 89 (05) ◽  
pp. 795-802 ◽  
Author(s):  
Deborah Lewis ◽  
Mary Pound ◽  
Thomas Ortel

SummaryThe crystal structure of the factor VIII C2 domain consists of a β-sandwich core from which β-hairpins and loops extend to form a hydrophobic surface. The hydrophobic surface includes M2199 and F2200 at the tip of the 1st β-hairpin. To determine the individual contributions of residues N2198, M2199, and F2200 to phospholipid and von Willebrand factor (vWF) binding properties of factor VIII, we prepared mutant proteins with single alanine substitutions. We found that single mutations at N2198 and M2199 had relatively little impact on cofactor activity, or phospholipid and vWF binding. However the F2200A mutant had slightly lower cofactor activity at subsaturating phospholipid concentrations. Competitive ELISAs suggested that F2200 plays a more important role in both phospholipid-binding and vWF-binding than N2198 and M2199. All mutant proteins were still recognized by a monoclonal antibody and two factor VIII inhibitors that neutralized cofactor activity and blocked factor VIII binding to phospholipids.Presented in part at the XVIII Congress of the International Society on Thrombosis and Haemostasis, Paris, France, 6-12 July 2001, and the 43rd Annual Meeting of the American Society of Hematology, Orlando, Florida, 7-11 December 2001


1995 ◽  
Vol 91 (3) ◽  
pp. 714-721 ◽  
Author(s):  
Midori Shima ◽  
Hiroaki Nakai ◽  
Dorothea Scandella ◽  
Ichiro Tanaka ◽  
Yoshikatu Sawamoto ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1715-1715
Author(s):  
Ting-Chang Hsu ◽  
Kathleen P. Pratt ◽  
Arthur R. Thompson

Abstract The C domains of factor VIII contain the primary binding site for the cofactor, activated factor VIII, to interact with the phospholipid membranes, including those on the platelet surface. Isolated C2 domain has been shown to bind to phosphotidyl-L-serine-rich lipids and platelets; under flow cytometry, binding to activated platelets was confirmed. For comparison, C1C2, expressed in E.coli, was prepared with up to mg quantities isolated. Fresh, gel-filtered platelets were then studied in a flow cytometer either with or without activation by the thrombin receptor peptide, SFLLRN-amide. Depending upon the conditions, up to 80% of the platelets could be stained with a monoclonal antibody to C2 (ESH8) that is known not to compete with lipid or von Willebrand factor binding. The results were confirmed using a S2296C mutant C1C2 where the free suflhydryl group was either biotinylated and detected by fluorescein labeled streptavidin or directly labeled with fluorescein. As shown in the figure, essentially all platelets bound directly fluorescein labeled C1C2. Using standardized, labeled microbeads, it was estimated that there are 7000–10,000 binding sites per platelet. After platelet activation, the number of platelets binding C1C2 increased with all three detecting systems but only by 15–30%. In contrast, binding of isolated C2, as determined either by ESH8 or as a C2296 biotinylated species, was much lower when the same molar amounts were added, and was primarily detectable following platelet activation. C1C2 binding appeared independent of von Willebrand factor as platelets from two unrelated subjects with severe, type 3 von Willebrand disease gave the same patterns on flow cytometry as seen in platelets from normal subjects. ESH4, a monoclonal antibody known to inhibit binding of C2 to lipid membranes effectively competed C1C2 binding to platelets. Although an indirect alteration the C2 domain conformation cannot be excluded, results support a direct role of C1 in enhancing platelet binding. Binding of direct florescein-labeled C1C2 to SFLLRN-amide-activated platelets Binding of direct florescein-labeled C1C2 to SFLLRN-amide-activated platelets


1978 ◽  
Vol 40 (02) ◽  
pp. 245-251 ◽  
Author(s):  
D Meyer ◽  
P A Mc Kee ◽  
L W Hoyer ◽  
T S Zimmerman ◽  
H R Gralnick

Sign in / Sign up

Export Citation Format

Share Document