Studies on the temperature dependence of electrical conductivity of solid-state proteins

2002 ◽  
Vol 305 (1-3) ◽  
pp. 322-327 ◽  
Author(s):  
L. Kubisz ◽  
E. Marzec
Author(s):  
Dominic Spencer Jolly ◽  
Ziyang Ning ◽  
Gareth O. Hartley ◽  
Boyang Liu ◽  
Dominic L. R. Melvin ◽  
...  

2003 ◽  
Vol 68 (7) ◽  
pp. 1233-1242 ◽  
Author(s):  
Orhan Turkoglu ◽  
Mustafa Soylak ◽  
Ibrahim Belenli

Chloro(phenyl)glyoxime, a vicinal dioxime, and its Ni(II), Cu(II) and Co(II) complexes were prepared. XRD patterns of the complexes point to similar crystal structures. IR and elemental analysis data revealed the 1:2 metal-ligand ratio in the complexes. The Co(II) complex is a dihydrate. Temperature dependence of electrical conductivity of the solid ligand and its complexes was measured in the temperature range 25-250 °C; it ranged between 10-14-10-6 Ω-1 cm-1 and increased with rising temperature. The activation energies were between 0.61-0.80 eV. The Co(II) complex has lower electric conductivity than the Ni(II) and Cu(II) complexes. This difference in the conductivity has been attributed to differences in the stability of the complexes.


1987 ◽  
Vol 97 ◽  
Author(s):  
Steven A. Sunshine ◽  
Doris Kang ◽  
James A. Ibers

ABSTRACTThe use of A2 Q/Q melts (A - alkali metal, Q - S or Se) for the synthesis of new one-dimensional solid-state materials is found to be of general utility and is illustrated here for the synthesis of K4 Ti3 SI4. Reaction of Ti metal with a K2 S/S melt at 375°C for 50 h affords K4 Ti3 SI4. The structure possesses one-dimensional chains of seven and eightcoordinate Ti atoms with each chain isolated from all others by surrounding K atoms. There are six S-S pairs (dave - 2.069(3) Å) so that the compound is one of TiIV and may be described as K4 [Ti3 (S)2 (S2)6]. Electrical conductivity measurements indicate that this material is a semiconductor.


2012 ◽  
Vol 730-732 ◽  
pp. 715-720
Author(s):  
Telmo G. Santos ◽  
João Faria ◽  
Pedro Vilaça ◽  
R.M. Miranda

Eddy currents are based on electromagnetic induction and analysis of electrical currents on conductive materials. This method is used for thickness measurements, corrosion and defects detection, electrical conductivity and magnetic permeability measurements. Recently, it has been exploited as a materials characterization technique, namely in solid state welding, since, compared to hardness, it is based in distinct physical phenomena. Electrical conductivity is controlled by electronic mobility, while hardness depends on crystal defects and thus a scale factor exists. This paper presents results of this characterization technique applied to multipass solid state friction stir processing (FSP) of AA1100 alloy. These results were compared to microstructural analysis and hardness measurements and show that eddy current is a feasibly, reliable and expedite technique to characterize processed materials. The electrical conductivity measured by eddy currents, maps more precisely structural features, while hardness does not. Measurement of electrical conductivity field suggests having potential to constitute an alternative and/or complement to hardness evaluation with the further advantage of being a non-destructive method.


2003 ◽  
Vol 101 (1-3) ◽  
pp. 334-337 ◽  
Author(s):  
M. Theodoropoulou ◽  
C.A. Krontiras ◽  
N. Xanthopoulos ◽  
S.N. Georga ◽  
M.N. Pisanias ◽  
...  

2019 ◽  
Vol 61 (7) ◽  
pp. 1270
Author(s):  
А.В. Яценко ◽  
С.В. Евдокимов ◽  
М.Н. Палатников ◽  
Н.В. Сидоров

The temperature dependence of the electrical conductivity and the primary pyroelectric coefficient of lithium niobate crystals LiNbO3 grown from a melt with K2O flux was investigated in the range of 292–450 K . It is shown that these crystals are characterized by a strong anisotropy of electrical conductivity, and in the temperature range studied, proton conductivity dominates.


2019 ◽  
Vol 85 (5) ◽  
pp. 60-68
Author(s):  
Yuliay Pogorenko ◽  
Anatoliy Omel’chuk ◽  
Roman Pshenichny ◽  
Anton Nagornyi

In the system RbF–PbF2–SnF2 are formed solid solutions of the heterovalent substitution RbxPb0,86‑xSn1,14F4-x (0 < x ≤ 0,2) with structure of β–PbSnF4. At x > 0,2 on the X-ray diffractograms, in addition to the basic structure, additional peaks are recorded that do not correspond to the reflexes of the individual fluorides and can indicate the formation of a mixture of solid solutions of different composition. For single-phase solid solutions, the calculated parameters of the crystal lattice are satisfactorily described by the Vegard rule. The introduction of ions of Rb+ into the initial structure leads to an increase in the parameter a of the elementary cell from 5.967 for x = 0 to 5.970 for x = 0.20. The replacement of a part of leads ions to rubium ions an increase in electrical conductivity compared with β–PbSnF4 and Pb0.86Sn1.14F4. Insignificant substitution (up to 3.0 mol%) of ions Pb2+ at Rb+ at T<500 K per order of magnitude reduces the conductivity of the samples obtained, while the nature of its temperature dependence is similar to the temperature dependence of the conductivity of the sample β-PbSnF4. By replacing 5 mol. % of ions with Pb2+ on Rb+, the fluoride ion conductivity at T> 450 K is higher than the conductivity of the initial sample Pb0,86Sn1,14F4 and at temperatures below 450 K by an order of magnitude smaller. With further increase in the content of RbF the electrical conductivity of the samples increases throughout the temperature range, reaching the maximum values at x≥0.15 (σ573 = 0.34–0.41 S/cm, Ea = 0.16 eV and σ373 = (5.34–8.16)•10-2 S/cm, Ea = 0.48–0.51 eV, respectively). In the general case, the replacement of a part of the ions of Pb2+ with Rb+ to an increase in the electrical conductivity of the samples throughout the temperature range. The activation energy of conductivity with an increase in the content of RbF in the low-temperature region in the general case increases, and at temperatures above 400 K is inversely proportional decreasing. The nature of the dependence of the activation energy on the concentration of the heterovalent substituent and its value indicate that the conductivity of the samples obtained increases with an increase in the vacancies of fluoride ions in the structure of the solid solutions.


Sign in / Sign up

Export Citation Format

Share Document