Calculation of impinging-jet heat transfer with the low-Reynolds-number q-ζ turbulence model

1997 ◽  
Vol 18 (1) ◽  
pp. 80-87 ◽  
Author(s):  
M.M. Gibson ◽  
R.D. Harper
Author(s):  
Vadim V. Lemanov ◽  
Viktor I. Terekhov ◽  
Vladimir V. Terekhov

1985 ◽  
Vol 107 (1) ◽  
pp. 60-67 ◽  
Author(s):  
J. H. Wang ◽  
H. F. Jen ◽  
E. O. Hartel

A two-dimensional, boundary-layer program, STAN5, was modified to incorporate a low-Reynolds number version of the K-ε, two-equation turbulence model for the predictions of flow and heat transfer around turbine airfoils. The K-ε, two-equation model with optimized empirical correlations was used to account for the effects of free-stream turbulence and transitional flow. The model was compared with experimental flat plate data and then applied to turbine airfoil heat transfer prediction. A two-zone model was proposed for handling the turbulent kinetic energy and dissipation rate empirically at the airfoil leading edge region. The result showed that the predicted heat transfer coefficient on the airfoil agreed favorably with experimental data, especially for the pressure side. The discrepancy between predictions and experimental data of the suction surface normally occurred at transitional and fully turbulent flow regions.


1997 ◽  
Vol 119 (4) ◽  
pp. 794-801 ◽  
Author(s):  
J. Luo ◽  
B. Lakshminarayana

The boundary layer development and convective heat transfer on transonic turbine nozzle vanes are investigated using a compressible Navier–Stokes code with three low-Reynolds-number k–ε models. The mean-flow and turbulence transport equations are integrated by a four-stage Runge–Kutta scheme. Numerical predictions are compared with the experimental data acquired at Allison Engine Company. An assessment of the performance of various turbulence models is carried out. The two modes of transition, bypass transition and separation-induced transition, are studied comparatively. Effects of blade surface pressure gradients, free-stream turbulence level, and Reynolds number on the blade boundary layer development, particularly transition onset, are examined. Predictions from a parabolic boundary layer code are included for comparison with those from the elliptic Navier–Stokes code. The present study indicates that the turbine external heat transfer, under real engine conditions, can be predicted well by the Navier–Stokes procedure with the low-Reynolds-number k–ε models employed.


2001 ◽  
Author(s):  
Miles Greiner ◽  
Paul F. Fischer ◽  
Henry Tufo

Abstract The effect of flow rate modulation on low Reynolds number heat transfer enhancement in a transversely grooved passage was numerically simulated using a two-dimensional spectral element technique. Simulations were performed at subcritical Reynolds numbers of Rem = 133 and 267, with 20% and 40% flow rate oscillations. The net pumping power required to modulate the flow was minimized as the forcing frequency approached the predicted natural frequency. However, mixing and heat transfer levels both increased as the natural frequency was approached. Oscillatory forcing in a grooved passage requires two orders of magnitude less pumping power than flat passage systems for the same heat transfer level. Hydrodynamic resonance appears to be an effective method of increasing heat transfer in low Reynolds number systems where pumping power is at a premium, such as micro heat transfer applications.


Author(s):  
Chen-Ru Zhao ◽  
Zhen Zhang ◽  
Qian-Feng Liu ◽  
Han-Liang Bo ◽  
Pei-Xue Jiang

Numerical investigations are performed on the convection heat transfer of supercritical pressure fluid flowing through vertical mini tube with inner diameter of 0.27 mm and inlet Reynolds number of 1900 under various heat fluxes conditions using low Reynolds number k-ε turbulence models due to LB (Lam and Bremhorst), LS (Launder and Sharma) and V2F (v2-f). The predictions are compared with the corresponding experimentally measured values. The prediction ability of various low Reynolds number k-ε turbulence models under deteriorated heat transfer conditions induced by combinations of buoyancy and flow acceleration effects are evaluated. Results show that all the three models give fairly good predictions of local wall temperature variations in conditions with relatively high inlet Reynolds number. For cases with relatively low inlet Reynolds number, V2F model is able to capture the general trends of deteriorated heat transfer when the heat flux is relatively low. However, the LS and V2F models exaggerate the flow acceleration effect when the heat flux increases, while the LB model produces qualitative predictions, but further improvements are still needed for quantitative prediction. Based on the detailed flow and heat transfer information generated by simulation, a better understanding of the mechanism of heat transfer deterioration is obtained. Results show that the redistribution of flow field induced by the buoyancy and flow acceleration effects are main factors leading to the heat transfer deterioration.


Sign in / Sign up

Export Citation Format

Share Document