scholarly journals A Dirichlet criterion for the stability of periodic and relative periodic orbits in Hamiltonian systems

1999 ◽  
Vol 32 (2) ◽  
pp. 131-159 ◽  
Author(s):  
Juan-Pablo Ortega ◽  
Tudor S. Ratiu
2000 ◽  
Vol 10 (01) ◽  
pp. 31-46
Author(s):  
MATS G. LARSON

We prove an a posteriori error estimate for approximations of periodic orbits in Hamiltonian systems using Galerkin methods which conserve the Hamiltonian. The error is estimated in terms of the local time step, the residual obtained by inserting the approximate solution into the differential equation, and a stability factor describing relevant stability properties of the adjoint linearized problem. The quantitative growth of the stability factor as a function of time is of particular interest. We show that the stability factor grows linearly with time for a certain class of problems when the conservative scheme is used, in contrast to the quadratic growth of the stability factor, expected for non-conservative schemes in general.


Author(s):  
Shahriar Aslani ◽  
Patrick Bernard

Abstract In the study of Hamiltonian systems on cotangent bundles, it is natural to perturb Hamiltonians by adding potentials (functions depending only on the base point). This led to the definition of Mañé genericity [ 8]: a property is generic if, given a Hamiltonian $H$, the set of potentials $g$ such that $H+g$ satisfies the property is generic. This notion is mostly used in the context of Hamiltonians that are convex in $p$, in the sense that $\partial ^2_{pp} H$ is positive definite at each point. We will also restrict our study to this situation. There is a close relation between perturbations of Hamiltonians by a small additive potential and perturbations by a positive factor close to one. Indeed, the Hamiltonians $H+g$ and $H/(1-g)$ have the same level one energy surface, hence their dynamics on this energy surface are reparametrisation of each other, this is the Maupertuis principle. This remark is particularly relevant when $H$ is homogeneous in the fibers (which corresponds to Finsler metrics) or even fiberwise quadratic (which corresponds to Riemannian metrics). In these cases, perturbations by potentials of the Hamiltonian correspond, up to parametrisation, to conformal perturbations of the metric. One of the widely studied aspects is to understand to what extent the return map associated to a periodic orbit can be modified by a small perturbation. This kind of question depends strongly on the context in which they are posed. Some of the most studied contexts are, in increasing order of difficulty, perturbations of general vector fields, perturbations of Hamiltonian systems inside the class of Hamiltonian systems, perturbations of Riemannian metrics inside the class of Riemannian metrics, and Mañé perturbations of convex Hamiltonians. It is for example well known that each vector field can be perturbed to a vector field with only hyperbolic periodic orbits, this is part of the Kupka–Smale Theorem, see [ 5, 13] (the other part of the Kupka–Smale Theorem states that the stable and unstable manifolds intersect transversally; it has also been studied in the various settings mentioned above but will not be discussed here). In the context of Hamiltonian vector fields, the statement has to be weakened, but it remains true that each Hamiltonian can be perturbed to a Hamiltonian with only non-degenerate periodic orbits (including the iterated ones), see [ 11, 12]. The same result is true in the context of Riemannian metrics: every Riemannian metric can be perturbed to a Riemannian metric with only non-degenerate closed geodesics, this is the bumpy metric theorem, see [ 1, 2, 4]. The question was investigated only much more recently in the context of Mañé perturbations of convex Hamiltonians, see [ 9, 10]. It is proved in [ 10] that the same result holds: if $H$ is a convex Hamiltonian and $a$ is a regular value of $H$, then there exist arbitrarily small potentials $g$ such that all periodic orbits (including iterated ones) of $H+g$ at energy $a$ are non-degenerate. The proof given in [ 10] is actually rather similar to the ones given in papers on the perturbations of Riemannian metrics. In all these proofs, it is very useful to work in appropriate coordinates around an orbit segment. In the Riemannian case, one can use the so-called Fermi coordinates. In the Hamiltonian case, appropriate coordinates are considered in [ 10,Lemma 3.1] itself taken from [ 3, Lemma C.1]. However, as we shall detail below, the proof of this Lemma in [ 3], Appendix C, is incomplete, and the statement itself is actually wrong. Our goal in the present paper is to state and prove a corrected version of this normal form Lemma. Our proof is different from the one outlined in [ 3], Appendix C. In particular, it is purely Hamiltonian and does not rest on the results of [ 7] on Finsler metrics, as [ 3] did. Although our normal form is weaker than the one claimed in [ 10], it is actually sufficient to prove the main results of [ 6, 10], as we shall explain after the statement of Theorem 1, and probably also of the other works using [ 3, Lemma C.1].


2016 ◽  
Vol 08 (03) ◽  
pp. 545-570 ◽  
Author(s):  
Luca Asselle ◽  
Gabriele Benedetti

Let [Formula: see text] be a closed manifold and consider the Hamiltonian flow associated to an autonomous Tonelli Hamiltonian [Formula: see text] and a twisted symplectic form. In this paper we study the existence of contractible periodic orbits for such a flow. Our main result asserts that if [Formula: see text] is not aspherical, then contractible periodic orbits exist for almost all energies above the maximum critical value of [Formula: see text].


1982 ◽  
Vol 104 (1) ◽  
pp. 27-32 ◽  
Author(s):  
S. N. Singh

Using the invariance principle of LaSalle [1], sufficient conditions for the existence of linear and nonlinear control laws for local and global asymptotic stability of nonlinear Hamiltonian systems are derived. An instability theorem is also presented which identifies the control laws from the given class which cannot achieve asymptotic stability. Some of the stability results are based on certain results for the univalence of nonlinear maps. A similar approach for the stabilization of bilinear systems which include nonconservative systems in elasticity is used and a necessary and sufficient condition for stabilization is obtained. An application to attitude control of a gyrostat Satellite is presented.


Author(s):  
Simão Stelmastchuk

Our first purpose is to study the stability of linear flows on real, connected, compact, semisimple Lie groups. Our second purpose is to study periodic orbits of linear and invariant flows. As an application, we present periodic orbits of linear or invariant flows on SO(3) and SU(2) and we study periodic orbits of linear or invariant flows on SO(4).


2021 ◽  
Vol 57 (2) ◽  
pp. 311-319
Author(s):  
M. Radwan ◽  
Nihad S. Abd El Motelp

The main goal of the present paper is to evaluate the perturbed locations and investigate the linear stability of the triangular points. We studied the problem in the elliptic restricted three body problem frame of work. The problem is generalized in the sense that the two primaries are considered as triaxial bodies. It was found that the locations of these points are affected by the triaxiality coefficients of the primaries and the eccentricity of orbits. Also, the stability regions depend on the involved perturbations. We also studied the periodic orbits in the vicinity of the triangular points.


Sign in / Sign up

Export Citation Format

Share Document