linear stability
Recently Published Documents


TOTAL DOCUMENTS

2552
(FIVE YEARS 397)

H-INDEX

66
(FIVE YEARS 8)

2022 ◽  
Vol 934 ◽  
Author(s):  
L.R. Gareev ◽  
J.S. Zayko ◽  
A.D. Chicherina ◽  
V.V. Trifonov ◽  
A.I. Reshmin ◽  
...  

We study the development of perturbations in a submerged air jet with a round cross-section and a long laminar region (five jet diameters) at a Reynolds number of 5400 by both inviscid linear stability theory and experiments. The theoretical analysis shows that there are two modes of growing axisymmetric perturbations, which are generated by three generalized inflection points of the jet's velocity profile. To validate the results of linear stability theory, we conduct experiments with controlled axisymmetric perturbations to the jet. The characteristics of growing waves are obtained by visualization, thermoanemometer measurements and correlation analysis. Experimentally measured wavelengths, growth rates and spatial distributions of velocity fluctuations for both growing modes are in good agreement with theoretical calculations. Therefore, it is demonstrated that small perturbations to the laminar jet closely follow the predictions of inviscid linear stability theory.


Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 38
Author(s):  
Gustavo Dotti

A review of the current status of the linear stability of black holes and naked singularities is given. The standard modal approach, that takes advantage of the background symmetries and analyze separately the harmonic components of linear perturbations, is briefly introduced and used to prove that the naked singularities in the Kerr–Newman family, as well as the inner black hole regions beyond Cauchy horizons, are unstable and therefore unphysical. The proofs require a treatment of the boundary condition at the timelike boundary, which is given in detail. The nonmodal linear stability concept is then introduced, and used to prove that the domain of outer communications of a Schwarzschild black hole with a non-negative cosmological constant satisfies this stronger stability condition, which rules out transient growths of perturbations, and also to show that the perturbed black hole settles into a slowly rotating Kerr black hole. The encoding of the perturbation fields in gauge invariant curvature scalars and the effects of the perturbation on the geometry of the spacetime is discussed. These notes follow from a course delivered at the V José Plínio Baptista School of Cosmology, held at Guarapari (Espírito Santo) Brazil, from 30 September to 5 October 2021.


2022 ◽  
Vol 933 ◽  
Author(s):  
Pulkit Dubey ◽  
Anubhab Roy ◽  
Ganesh Subramanian

We revisit the somewhat classical problem of the linear stability of a rigidly rotating liquid column in this article. Although the literature pertaining to this problem dates back to 1959, the relation between inviscid and viscous stability criteria has not yet been clarified. While the viscous criterion for stability, given by $We < n^2 + k^2 -1$ , is both necessary and sufficient, this relation has only been shown to be sufficient in the inviscid case. Here, $We = \rho \varOmega ^2 a^3 / \gamma$ is the Weber number and measures the relative magnitudes of the centrifugal and surface tension forces, with $\varOmega$ being the angular velocity of the rigidly rotating column, $a$ the column radius, $\rho$ the density of the fluid and $\gamma$ the surface tension coefficient; $k$ and $n$ denote the axial and azimuthal wavenumbers of the imposed perturbation. We show that the subtle difference between the inviscid and viscous criteria arises from the surprisingly complicated picture of inviscid stability in the $We$ – $k$ plane. For all $n > 1$ , the viscously unstable region, corresponding to $We > n^2 + k^2-1$ , contains an infinite hierarchy of inviscidly stable islands ending in cusps, with a dominant leading island. Only the dominant island, now infinite in extent along the $We$ axis, persists for $n=1$ . This picture may be understood, based on the underlying eigenspectrum, as arising from the cascade of coalescences between a retrograde mode, that is the continuation of the cograde surface-tension-driven mode across the zero Doppler frequency point, and successive retrograde Coriolis modes constituting an infinite hierarchy.


2022 ◽  
Author(s):  
Balaji Shankar Venkatachari ◽  
Pedro Paredes ◽  
Meelan M. Choudhari ◽  
Fei Li ◽  
Chau-Lyan Chang

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Zhiwu Lin

<p style='text-indent:20px;'>We consider linear stability of steady states of 1<inline-formula><tex-math id="M1">\begin{document}$ \frac{1}{2} $\end{document}</tex-math></inline-formula> and 3DVlasov-Maxwell systems for collisionless plasmas. The linearized systems canbe written as separable Hamiltonian systems with constraints. By using ageneral theory for separable Hamiltonian systems, we recover the sharp linearstability criteria obtained previously by different approaches. Moreover, weobtain the exponential trichotomy estimates for the linearized Vlasov-Maxwellsystems in both relativistic and nonrelativistic cases.</p>


Sign in / Sign up

Export Citation Format

Share Document