EVALUATION OF THE BRAIN BY POSITRON EMISSION TOMOGRAPHY

1993 ◽  
Vol 19 (4) ◽  
pp. 765-794
Author(s):  
Peter Herscovitch
2017 ◽  
Vol 37 (10) ◽  
pp. 3401-3408 ◽  
Author(s):  
Shi Shu ◽  
Li Zhang ◽  
Yi Cheng Zhu ◽  
Fang Li ◽  
Li Ying Cui ◽  
...  

Angiogenesis is a critical compensation route, which has been demonstrated in the brain following ischemic stroke; however, few studies have investigated angiogenesis in chronic intracranial atherosclerosis disease (ICAD). We used 68Ga-NOTA-PRGD2 positron emission tomography/computed tomography based imaging to detect angiogenesis in chronic ICAD and to explore the factors that may have affected it. A total of 21 participants with unilateral severe chronic ICAD were included in the study. Of the 21 participants, 19 were men; the mean (SD) age was 52 (15) years. In 18 participants, we observed elevated 68Ga-NOTA-PRGD2 uptake in the peri-infarct, subcortical, and periventricular regions of the lesioned side, with a higher 68Ga-NOTA-PRGD2 SUVmax compared to that in the contralateral hemisphere (0.15 vs. 0.06, p=0.001). The 18F-FDG PET SUVmax was significantly lower on the lesioned side (11.28 vs. 13.92, p=0.001). Subgroup analyses revealed that the recent group (<6 months) had a higher lesion-to-contralateral region ratio SUVmax than the remote group (>6 months) (6.73 vs. 2.36, p<0.05). Our results provide molecular imaging evidence of angiogenesis in patients with severe chronic ICAD. Furthermore, the extent of angiogenesis in chronic ICAD may be affected by the post-qualified event time interval, and not by infarction itself or the severity of the arterial lesion.


Author(s):  
Saugat Bhattacharyya ◽  
Anwesha Khasnobish ◽  
Poulami Ghosh ◽  
Ankita Mazumder ◽  
D. N. Tibarewala

Evolution has endowed human race with the most adroit brain, and to harness its potential to the fullest the concept of brain computer interface (BCI) has emerged. One of the most crucial components of BCI is the technique of brain imaging. The first approach in the field of brain imaging was to measure the electrical and magnetic activity of the brain, the techniques being known as Electroencephalography and Magnetoencephalography. Striving for furtherance, researchers came up with another alternative known as Magnetic Resonance Imaging. But it being confined to only structural imaging, the functional aspects of brain were mapped using functional magnetic resonance imaging. A similar but comparatively newer neuroimaging modality is Functional Near Infrared Spectroscopy. Transcranial Magnetic Stimulation neuro-physiological technique is based on the principle of electromagnetic induction. Based on nuclear medicine the brain imaging technologies that are widely explored in the world of BCI are Positron Emission Tomography and Single Positron Emission Tomography.


2017 ◽  
Vol 29 (1) ◽  
pp. 122
Author(s):  
H. J. Oh ◽  
J. Moon ◽  
G. A. Kim ◽  
S. Lee ◽  
S. H. Paek ◽  
...  

Due to similarities between human and porcine, pigs have been proposed as an excellent experimental animal for human medical research. Especially in paediatric brain research, piglets share similarities with human infants in the extent of peak brain growth at the time of birth and the growth pattern of brain. Thus, these findings have supported the wider use of pigs rather than rodents in neuroscience research. Previously, we reported the production of porcine model of Parkinson's disease (PD) by nuclear transfer using donor cell that had been stably infected with lentivirus containing the human α-synuclein gene. The purpose of this study was to determine the alternation of brain metabolism and dopaminergic neuron destruction using noninvasive method in a 2-yr-old PD model and a control pig. The positron emission tomography (PET) scan was done using Biograph TruePoint40 with a TrueV (Siemens, Munich, Germany). The [18F]N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl) nortropane (FP-CIT) was administrated via the ear vein. Static images of the brain for 15 min were acquired from 2 h after injection. The 18F-fluorodeoxy-D-glucose PET (18F-FDG PET) images of the brain were obtained for 15 min at 45 min post-injection. Computed tomography (CT) scan and magnetic resonance imaging (MRI) were performed at the same location of the brain. In both MRI and CT images, there was no difference in brain regions between PD model and control pigs. However, administration of [18F]FP-CIT was markedly decreased in the bilateral putamen of the PD model pig compared with the control pigs. Moreover, [18F]FP-CIT administration was asymmetrical in the PD model pig but it was symmetrical in control pigs. Regional brain metabolism was also assessed and there was no significant difference in cortical metabolism of PD model and control pigs. We demonstrated that PET imaging could provide a foundation for translational Parkinson neuroimaging in transgenic pigs. In the present study, a 2-yr-old PD model pig showed dopaminergic neuron destruction in brain regions. Therefore, PD model pig expressing human α-synuclein gene would be an efficient model for human PD patients. This study was supported by Korea IPET (#311011–05–5-SB010), Research Institute for Veterinary Science, TS Corporation and the BK21 plus program.


Sign in / Sign up

Export Citation Format

Share Document