Analogous features of delayed luminescence from Acetabularia acetabulum and some solid state systems

2000 ◽  
Vol 56 (2-3) ◽  
pp. 181-186 ◽  
Author(s):  
A Scordino ◽  
A Triglia ◽  
F Musumeci
2015 ◽  
Vol 238 ◽  
pp. 161-173 ◽  
Author(s):  
William Geoffrey West ◽  
Kimberlee Jane Kearfott

A subset of solid state materials have long been used as integrating dosimeters because they store energy deposited as a result of their interactions with ionizing radiation and then, when stimulated appropriately, release a proportionate amount of visible or near-visible light. During the 1960s, thermoluminescent dosimeters (TLDs), for which heat is used to extract the stored dosimetric signal, began to replace the photographic film as occupational dosimeters of record and for medical dosimetry. At the end of the twentieth century, a viable optically stimulated luminescent (OSL) material was developed which is now gaining in popularity as both an occupational and medical dosimeter. This paper reviews the related stored luminescence processes, presenting a simple conceptual model for optical absorption transitions in OSL materials along with a basic mathematical model for delayed luminescence. The approaches for extracting signal from the OSLs are enumerated.


Author(s):  
T. J. Magee ◽  
J. Peng ◽  
J. Bean

Cadmium telluride has become increasingly important in a number of technological applications, particularly in the area of laser-optical components and solid state devices, Microstructural characterizations of the material have in the past been somewhat limited because of the lack of suitable sample preparation and thinning techniques. Utilizing a modified jet thinning apparatus and a potassium dichromate-sulfuric acid thinning solution, a procedure has now been developed for obtaining thin contamination-free samples for TEM examination.


Author(s):  
Kenneth M. Richter ◽  
John A. Schilling

The structural unit of solid state collagen complexes has been reported by Porter and Vanamee via EM and by Cowan, North and Randall via x-ray diffraction to be an ellipsoidal unit of 210-270 A. length by 50-100 A. diameter. It subsequently was independently demonstrated by us in dog tendon, dermis, and induced complexes. Its detailed morphologic, dimensional and molecular weight (MW) aspects have now been determined. It is pear-shaped in long profile with m diameters of 57 and 108 A. and m length of 263 A. (Fig. 1, tendon, KMnO4 fixation, Na-tungstate; Fig. 2a, schematic of unit in long, C, and x-sectional profiles of its thin, xB, and bulbous, xA portions; Fig. 2b, tendon essentially unmodified by ether and 0.4 N NaOH treatment, Na-tungstate). The unit consists of a uniquely coild cable, c, of ṁ 22.9 A. diameter and length of 2580-3316 A. The cable consists of three 2nd-strands, s, each of m 10.6 A.


Sign in / Sign up

Export Citation Format

Share Document