scholarly journals GEOMETRIC BIJECTIONS FOR REGULAR MATROIDS, ZONOTOPES, AND EHRHART THEORY

2019 ◽  
Vol 7 ◽  
Author(s):  
SPENCER BACKMAN ◽  
MATTHEW BAKER ◽  
CHI HO YUEN

Let $M$ be a regular matroid. The Jacobian group $\text{Jac}(M)$ of $M$ is a finite abelian group whose cardinality is equal to the number of bases of $M$ . This group generalizes the definition of the Jacobian group (also known as the critical group or sandpile group) $\operatorname{Jac}(G)$ of a graph $G$ (in which case bases of the corresponding regular matroid are spanning trees of $G$ ). There are many explicit combinatorial bijections in the literature between the Jacobian group of a graph $\text{Jac}(G)$ and spanning trees. However, most of the known bijections use vertices of $G$ in some essential way and are inherently ‘nonmatroidal’. In this paper, we construct a family of explicit and easy-to-describe bijections between the Jacobian group of a regular matroid $M$ and bases of $M$ , many instances of which are new even in the case of graphs. We first describe our family of bijections in a purely combinatorial way in terms of orientations; more specifically, we prove that the Jacobian group of $M$ admits a canonical simply transitive action on the set ${\mathcal{G}}(M)$ of circuit–cocircuit reversal classes of $M$ , and then define a family of combinatorial bijections $\unicode[STIX]{x1D6FD}_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D70E}^{\ast }}$ between ${\mathcal{G}}(M)$ and bases of $M$ . (Here $\unicode[STIX]{x1D70E}$ (respectively $\unicode[STIX]{x1D70E}^{\ast }$ ) is an acyclic signature of the set of circuits (respectively cocircuits) of $M$ .) We then give a geometric interpretation of each such map $\unicode[STIX]{x1D6FD}=\unicode[STIX]{x1D6FD}_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D70E}^{\ast }}$ in terms of zonotopal subdivisions which is used to verify that $\unicode[STIX]{x1D6FD}$ is indeed a bijection. Finally, we give a combinatorial interpretation of lattice points in the zonotope $Z$ ; by passing to dilations we obtain a new derivation of Stanley’s formula linking the Ehrhart polynomial of $Z$ to the Tutte polynomial of $M$ .

10.37236/2106 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Felix Breuer

The Ehrhart polynomial $L_P$ of an integral polytope $P$ counts the number of integer points in integral dilates of $P$. Ehrhart polynomials of polytopes are often described in terms of their Ehrhart $h^*$-vector (aka Ehrhart $\delta$-vector), which is the vector of coefficients of $L_P$ with respect to a certain binomial basis and which coincides with the $h$-vector of a regular unimodular triangulation of $P$ (if one exists). One important result by Stanley about $h^*$-vectors of polytopes is that their entries are always non-negative. However, recent combinatorial applications of Ehrhart theory give rise to polytopal complexes with $h^*$-vectors that have negative entries.In this article we introduce the Ehrhart $f^*$-vector of polytopes or, more generally, of polytopal complexes $K$. These are again coefficient vectors of $L_K$ with respect to a certain binomial basis of the space of polynomials and they have the property that the $f^*$-vector of a unimodular simplicial complex coincides with its $f$-vector. The main result of this article is a counting interpretation for the $f^*$-coefficients which implies that $f^*$-coefficients of integral polytopal complexes are always non-negative integers. This holds even if the polytopal complex does not have a unimodular triangulation and if its $h^*$-vector does have negative entries. Our main technical tool is a new partition of the set of lattice points in a simplicial cone into discrete cones. Further results include a complete characterization of Ehrhart polynomials of integral partial polytopal complexes and a non-negativity theorem for the $f^*$-vectors of rational polytopal complexes.


2013 ◽  
Vol 65 (4) ◽  
pp. 863-878 ◽  
Author(s):  
Matthieu Josuat Vergès

AbstractThe q-semicircular distribution is a probability law that interpolates between the Gaussian law and the semicircular law. There is a combinatorial interpretation of itsmoments in terms ofmatchings, where q follows the number of crossings, whereas for the free cumulants one has to restrict the enumeration to connected matchings. The purpose of this article is to describe combinatorial properties of the classical cumulants. We show that like the free cumulants, they are obtained by an enumeration of connected matchings, the weight being now an evaluation of the Tutte polynomial of a so-called crossing graph. The case q = 0 of these cumulants was studied by Lassalle using symmetric functions and hypergeometric series. We show that the underlying combinatorics is explained through the theory of heaps, which is Viennot's geometric interpretation of the Cartier–Foata monoid. This method also gives a general formula for the cumulants in terms of free cumulants.


2020 ◽  
Vol 29 (03) ◽  
pp. 2050004
Author(s):  
Hery Randriamaro

The Tutte polynomial is originally a bivariate polynomial which enumerates the colorings of a graph and of its dual graph. Ardila extended in 2007 the definition of the Tutte polynomial on the real hyperplane arrangements. He particularly computed the Tutte polynomials of the hyperplane arrangements associated to the classical Weyl groups. Those associated to the exceptional Weyl groups were computed by De Concini and Procesi one year later. This paper has two objectives: On the one side, we extend the Tutte polynomial computing to the complex hyperplane arrangements. On the other side, we introduce a wider class of hyperplane arrangements which is that of the symmetric hyperplane arrangements. Computing the Tutte polynomial of a symmetric hyperplane arrangement permits us to deduce the Tutte polynomials of some hyperplane arrangements, particularly of those associated to the imprimitive reflection groups.


2021 ◽  
Vol 118 (12) ◽  
pp. e2021244118
Author(s):  
Alessio Caminata ◽  
Noah Giansiracusa ◽  
Han-Bom Moon ◽  
Luca Schaffler

In 2004, Pachter and Speyer introduced the higher dissimilarity maps for phylogenetic trees and asked two important questions about their relation to the tropical Grassmannian. Multiple authors, using independent methods, answered affirmatively the first of these questions, showing that dissimilarity vectors lie on the tropical Grassmannian, but the second question, whether the set of dissimilarity vectors forms a tropical subvariety, remained opened. We resolve this question by showing that the tropical balancing condition fails. However, by replacing the definition of the dissimilarity map with a weighted variant, we show that weighted dissimilarity vectors form a tropical subvariety of the tropical Grassmannian in exactly the way that Pachter and Speyer envisioned. Moreover, we provide a geometric interpretation in terms of configurations of points on rational normal curves and construct a finite tropical basis that yields an explicit characterization of weighted dissimilarity vectors.


2013 ◽  
Vol 15 (02) ◽  
pp. 1250059 ◽  
Author(s):  
MICHAEL B. HENRY ◽  
DAN RUTHERFORD

For a Legendrian knot L ⊂ ℝ3, with a chosen Morse complex sequence (MCS), we construct a differential graded algebra (DGA) whose differential counts "chord paths" in the front projection of L. The definition of the DGA is motivated by considering Morse-theoretic data from generating families. In particular, when the MCS arises from a generating family F, we give a geometric interpretation of our chord paths as certain broken gradient trajectories which we call "gradient staircases". Given two equivalent MCS's we prove the corresponding linearized complexes of the DGA are isomorphic. If the MCS has a standard form, then we show that our DGA agrees with the Chekanov–Eliashberg DGA after changing coordinates by an augmentation.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Petter Brändèn ◽  
Luca Moci

International audience We introduce an arithmetic version of the multivariate Tutte polynomial recently studied by Sokal, and a quasi-polynomial that interpolates between the two. We provide a generalized Fortuin-Kasteleyn representation for representable arithmetic matroids, with applications to arithmetic colorings and flows. We give a new proof of the positivity of the coefficients of the arithmetic Tutte polynomial in the more general framework of pseudo-arithmetic matroids. In the case of a representable arithmetic matroid, we provide a geometric interpretation of the coefficients of the arithmetic Tutte polynomial. Nous introduisons une version arithmétique du polynôme de Tutte multivariée récemment étudié par Sokal, et un quasi-polynôme qui interpole entre les deux. Nous proposons une représentation de Fortuin-Kasteleyn neutralise pour les matroïdes arithmétiques représentables, avec des applications aux colorations et flux arithmétiques. Nous donnons une nouvelle preuve de la positivité des coefficients du polynôme de Tutte arithmétique dans le cadre plus général des matroïdes pseudo-arithmétiques. Dans le cas d'un matroïde arithmétique représentable, nous proposons une interprétation géométrique des coefficients du polynôme de Tutte arithmétique.


Author(s):  
Evgeniy K. Leinartas ◽  
Olga A. Shishkina

Definition of the discrete primitive function is introduced in the problem of summation over simplex lattice points. The discrete analog of the Newton-Leibniz formula is found


Sign in / Sign up

Export Citation Format

Share Document