differential graded algebra
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 10)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Matthias Franz

We compute the cohomology rings of smooth real toric varieties and of real toric spaces, which are quotients of real moment-angle complexes by freely acting subgroups of the ambient 2-torus. The differential graded algebra (dga) we present is in fact an equivariant dga model, valid for arbitrary coefficients. We deduce from our description that smooth toric varieties are $\hbox{M}$ -varieties.


Author(s):  
Walter D. van Suijlekom ◽  
Jeroen Winkel

AbstractWe introduce and analyse a general notion of fundamental group for noncommutative spaces, described by differential graded algebras. For this we consider connections on finitely generated projective bimodules over differential graded algebras and show that the category of flat connections on such modules forms a Tannakian category. As such this category can be realised as the category of representations of an affine group scheme G, which in the classical case is (the pro-algebraic completion of) the usual fundamental group. This motivates us to define G to be the fundamental group of the noncommutative space under consideration. The needed assumptions on the differential graded algebra are rather mild and completely natural in the context of noncommutative differential geometry. We establish the appropriate functorial properties, homotopy and Morita invariance of this fundamental group. As an example we find that the fundamental group of the noncommutative torus can be described as the algebraic hull of the topological group $(\mathbb Z+\theta \mathbb Z)^{2}$ ( ℤ + 𝜃 ℤ ) 2 .


2020 ◽  
Vol 156 (8) ◽  
pp. 1718-1743
Author(s):  
Birgit Richter ◽  
Steffen Sagave

AbstractThe commutative differential graded algebra $A_{\mathrm {PL}}(X)$ of polynomial forms on a simplicial set $X$ is a crucial tool in rational homotopy theory. In this note, we construct an integral version $A^{\mathcal {I}}(X)$ of $A_{\mathrm {PL}}(X)$. Our approach uses diagrams of chain complexes indexed by the category of finite sets and injections $\mathcal {I}$ to model $E_{\infty }$ differential graded algebras (dga) by strictly commutative objects, called commutative $\mathcal {I}$-dgas. We define a functor $A^{\mathcal {I}}$ from simplicial sets to commutative $\mathcal {I}$-dgas and show that it is a commutative lift of the usual cochain algebra functor. In particular, it gives rise to a new construction of the $E_{\infty }$ dga of cochains. The functor $A^{\mathcal {I}}$ shares many properties of $A_{\mathrm {PL}}$, and can be viewed as a generalization of $A_{\mathrm {PL}}$ that works over arbitrary commutative ground rings. Working over the integers, a theorem by Mandell implies that $A^{\mathcal {I}}(X)$ determines the homotopy type of $X$ when $X$ is a nilpotent space of finite type.


2020 ◽  
Vol 71 (2) ◽  
pp. 729-779
Author(s):  
Rafal Komendarczyk ◽  
Robin Koytcheff ◽  
Ismar Volić

Abstract We use rational formality of configuration spaces and the bar construction to study the cohomology of the space of braids in dimension four or greater. We provide a diagram complex for braids and a quasi-isomorphism to the de Rham cochains on the space of braids. The quasi-isomorphism is given by a configuration space integral followed by Chen’s iterated integrals. This extends results of Kohno and of Cohen and Gitler on the cohomology of the space of braids to a commutative differential graded algebra suitable for integration. We show that this integration is compatible with Bott–Taubes configuration space integrals for long links via a map between two diagram complexes. As a corollary, we get a surjection in cohomology from the space of long links to the space of braids. We also discuss to what extent our results apply to the case of classical braids.


Author(s):  
Loring W. Tu

This chapter investigates differential graded algebras. Throughout the chapter, G will be a Lie group with Lie algebra g. On a manifold M, the de Rham complex is a differential graded algebra, a graded algebra that is also a differential complex. If the Lie group G acts smoothly on M, then the de Rham complex Ω‎(M) is more than a differential graded algebra. It has in addition two actions of the Lie algebra: interior multiplication and the Lie derivative. A differential graded algebra Ω‎ with an interior multiplication and a Lie derivative satisfying Cartan's homotopy formula is called a g-differential graded algebra. To construct an algebraic model for equivariant cohomology, the chapter first constructs an algebraic model for the total space EG of the universal G-bundle. It is a g-differential graded algebra called the Weil algebra.


Author(s):  
Loring W. Tu

This chapter evaluates the Weil algebra and the Weil model. The Weil algebra of a Lie algebra g is a g-differential graded algebra that in a definite sense models the total space EG of a universal bundle when g is the Lie algebra of a Lie group G. The Weil algebra of the Lie algebra g and the map f is called the Weil map. The Weil map f is a graded-algebra homomorphism. The chapter then shows that the Weil algebra W(g) is a g-differential graded algebra. The chapter then looks at the cohomology of the Weil algebra; studies algebraic models for the universal bundle and the homotopy quotient; and considers the functoriality of the Weil model.


2019 ◽  
Vol 31 (09) ◽  
pp. 1950033
Author(s):  
Partha Sarathi Chakraborty ◽  
Satyajit Guin

In his book on noncommutative geometry, Connes constructed a differential graded algebra out of a spectral triple. Lack of monoidality of this construction is investigated. We identify a suitable monoidal subcategory of the category of spectral triples and show that when restricted to this subcategory the construction of Connes is monoidal. Richness of this subcategory is exhibited by establishing a faithful endofunctor to this subcategory.


2019 ◽  
Vol 11 (01) ◽  
pp. 109-118
Author(s):  
Alexander Gorokhovsky ◽  
Dennis Sullivan ◽  
Zhizhang Xie

In the context of commutative differential graded algebras over [Formula: see text], we show that an iteration of “odd spherical fibration” creates a “total space” commutative differential graded algebra with only odd degree cohomology. Then we show for such a commutative differential graded algebra that, for any of its “fibrations” with “fiber” of finite cohomological dimension, the induced map on cohomology is injective.


Sign in / Sign up

Export Citation Format

Share Document