A self-consistent formulation for the sensitivity analysis of finite-amplitude vortex shedding in the cylinder wake

2016 ◽  
Vol 800 ◽  
pp. 327-357 ◽  
Author(s):  
P. Meliga ◽  
E. Boujo ◽  
F. Gallaire

We use the adjoint method to compute sensitivity maps for the limit-cycle frequency and amplitude of the Bénard–von Kármán vortex street in the wake of a circular cylinder. The sensitivity analysis is performed in the frame of the semi-linear self-consistent model recently introduced by Mantič et al. (Phys. Rev. Lett., vol. 113, 2014, 084501), which allows us to describe accurately the effect of the control on the mean flow, but also on the finite-amplitude fluctuation that couples back nonlinearly onto the mean flow via the formation of Reynolds stress. The sensitivity is computed with respect to arbitrary steady and synchronous time-harmonic body forces. For a small amplitude of the control, the theoretical variations of the limit-cycle frequency predict well those of the controlled flow, as obtained from either self-consistent modelling or direct numerical simulation of the Navier–Stokes equations. This is not the case if the variations are computed in the simpler mean flow approach overlooking the coupling between the mean and fluctuating components of the flow perturbation induced by the control. The variations of the limit-cycle amplitude (that falls out the scope of the mean flow approach) are also correctly predicted, meaning that the approach can serve as a relevant and systematic guideline to control strongly unstable flows exhibiting non-small, finite amplitudes of oscillation. As an illustration, we apply the method to control by means of a small secondary control cylinder and discuss the obtained results in the light of the seminal experiments of Strykowski & Sreenivasan (J. Fluid Mech., vol. 218, 1990, pp. 71–107).

Author(s):  
E. Yim ◽  
P. Meliga ◽  
F. Gallaire

We investigate the saturation of harmonically forced disturbances in the turbulent flow over a backward-facing step subjected to a finite amplitude forcing. The analysis relies on a triple decomposition of the unsteady flow into mean, coherent and incoherent components. The coherent–incoherent interaction is lumped into a Reynolds averaged Navier–Stokes (RANS) eddy viscosity model, and the mean–coherent interaction is analysed via a semi-linear resolvent analysis building on the laminar approach by Mantič-Lugo & Gallaire (2016 J. Fluid Mech. 793 , 777–797. ( doi:10.1017/jfm.2016.109 )). This provides a self-consistent modelling of the interaction between all three components, in the sense that the coherent perturbation structures selected by the resolvent analysis are those whose Reynolds stresses force the mean flow in such a way that the mean flow generates exactly the aforementioned perturbations, while also accounting for the effect of the incoherent scale. The model does not require any input from numerical or experimental data, and accurately predicts the saturation of the forced coherent disturbances, as established from comparison to time-averages of unsteady RANS simulation data.


2015 ◽  
Vol 27 (7) ◽  
pp. 074103 ◽  
Author(s):  
Vladislav Mantič-Lugo ◽  
Cristóbal Arratia ◽  
François Gallaire

2018 ◽  
Vol 859 ◽  
pp. 516-542 ◽  
Author(s):  
Calum S. Skene ◽  
Peter J. Schmid

A linear numerical study is conducted to quantify the effect of swirl on the response behaviour of premixed lean flames to general harmonic excitation in the inlet, upstream of combustion. This study considers axisymmetric M-flames and is based on the linearised compressible Navier–Stokes equations augmented by a simple one-step irreversible chemical reaction. Optimal frequency response gains for both axisymmetric and non-axisymmetric perturbations are computed via a direct–adjoint methodology and singular value decompositions. The high-dimensional parameter space, containing perturbation and base-flow parameters, is explored by taking advantage of generic sensitivity information gained from the adjoint solutions. This information is then tailored to specific parametric sensitivities by first-order perturbation expansions of the singular triplets about the respective parameters. Valuable flow information, at a negligible computational cost, is gained by simple weighted scalar products between direct and adjoint solutions. We find that for non-swirling flows, a mode with azimuthal wavenumber $m=2$ is the most efficiently driven structure. The structural mechanism underlying the optimal gains is shown to be the Orr mechanism for $m=0$ and a blend of Orr and other mechanisms, such as lift-up, for other azimuthal wavenumbers. Further to this, velocity and pressure perturbations are shown to make up the optimal input and output showing that the thermoacoustic mechanism is crucial in large energy amplifications. For $m=0$ these velocity perturbations are mainly longitudinal, but for higher wavenumbers azimuthal velocity fluctuations become prominent, especially in the non-swirling case. Sensitivity analyses are carried out with respect to the Mach number, Reynolds number and swirl number, and the accuracy of parametric gradients of the frequency response curve is assessed. The sensitivity analysis reveals that increases in Reynolds and Mach numbers yield higher gains, through a decrease in temperature diffusion. A rise in mean-flow swirl is shown to diminish the gain, with increased damping for higher azimuthal wavenumbers. This leads to a reordering of the most effectively amplified mode, with the axisymmetric ($m=0$) mode becoming the dominant structure at moderate swirl numbers.


1967 ◽  
Vol 27 (4) ◽  
pp. 657-689 ◽  
Author(s):  
R. E. Kelly

In experiments concerning the instability of free shear layers, oscillations have been observed in the downstream flow which have a frequency exactly half that of the dominant oscillation closer to the origin of the layer. The present analysis indicates that the phenomenon is due to a secondary instability associated with the nearly periodic flow which arises from the finite-amplitude growth of the fundamental disturbance.At first, however, the stability of inviscid shear flows, consisting of a non-zero mean component, together with a component periodic in the direction of flow and with time, is investigated fairly generally. It is found that the periodic component can serve as a means by which waves with twice the wavelength of the periodic component can be reinforced. The dependence of the growth rate of the subharmonic wave upon the amplitude of the periodic component is found for the case when the mean flow profile is of the hyperbolic-tangent type. In order that the subharmonic growth rate may exceed that of the most unstable disturbance associated with the mean flow, the amplitude of the streamwise component of the periodic flow is required to be about 12 % of the mean velocity difference across the shear layer. This represents order-of-magnitude agreement with experiment.Other possibilities of interaction between disturbances and the periodic flow are discussed, and the concluding section contains a discussion of the interactions on the basis of the energy equation.


Author(s):  
S M Fraser ◽  
Y Zhang

Three-dimensional turbulent flow through the impeller passage of a model mixed-flow pump has been simulated by solving the Navier-Stokes equations with an improved κ-ɛ model. The standard κ-ɛ model was found to be unsatisfactory for solving the off-design impeller flow and a converged solution could not be obtained at 49 per cent design flowrate. After careful analysis, it was decided to modify the standard κ-ɛ model by including the extra rates of strain due to the acceleration of impeller rotation and geometrical curvature and removing the mathematical ill-posedness between the mean flow turbulence modelling and the logarithmic wall function.


2012 ◽  
Vol 712 ◽  
pp. 169-202 ◽  
Author(s):  
A. Busse ◽  
N. D. Sandham

AbstractThe effects of rough surfaces on turbulent channel flow are modelled by an extra force term in the Navier–Stokes equations. This force term contains two parameters, related to the density and the height of the roughness elements, and a shape function, which regulates the influence of the force term with respect to the distance from the channel wall. This permits a more flexible specification of a rough surface than a single parameter such as the equivalent sand grain roughness. The effects of the roughness force term on turbulent channel flow have been investigated for a large number of parameter combinations and several shape functions by direct numerical simulations. It is possible to cover the full spectrum of rough flows ranging from hydraulically smooth through transitionally rough to fully rough cases. By using different parameter combinations and shape functions, it is possible to match the effects of different types of rough surfaces. Mean flow and standard turbulence statistics have been used to compare the results to recent experimental and numerical studies and a good qualitative agreement has been found. Outer scaling is preserved for the streamwise velocity for both the mean profile as well as its mean square fluctuations in all but extremely rough cases. The structure of the turbulent flow shows a trend towards more isotropic turbulent states within the roughness layer. In extremely rough cases, spanwise structures emerge near the wall and the turbulent state resembles a mixing layer. A direct comparison with the study of Ashrafian, Andersson & Manhart (Intl J. Heat Fluid Flow, vol. 25, 2004, pp. 373–383) shows a good quantitative agreement of the mean flow and Reynolds stresses everywhere except in the immediate vicinity of the rough wall. The proposed roughness force term may be of benefit as a wall model for direct and large-eddy numerical simulations in cases where the exact details of the flow over a rough wall can be neglected.


1979 ◽  
Vol 92 (2) ◽  
pp. 269-301 ◽  
Author(s):  
R. E. Britter ◽  
J. C. R. Hunt ◽  
J. C. Mumford

The flow of grid-generated turbulence past a circular cylinder is investigated using hot-wire anemometry over a Reynolds number range from 4·25 × 103 to 2·74 × 104 and a range of intensities from 0·025 to 0·062. Measurements of the mean velocity distribution, and r.m.s. intensities and spectral energy densities of the turbulent velocity fluctuations are presented for various radial and circumferential positions relative to the cylinder, and for ratios of the cylinder radius a to the scale of the incident turbulence Lx ranging from 0·05 to 1·42. The influence of upstream conditions on the flow in the cylinder wake and its associated induced velocity fluctuations is discussed.For all measurements, detailed comparison is made with the theoretical predictions of Hunt (1973). We conclude the following. The amplification and reduction of the three components of turbulence (which occur in different senses for the different components) can be explained qualitatively in terms of the distortion by the mean flow of the turbulent vorticity and the ‘blocking’ or ‘source’ effect caused by turbulence impinging on the cylinder surface. The relative importance of the first effect over the second increases as a/Lx increases or the distance from the cylinder surface increases.Over certain ranges of the variables involved, the measurements are in quantitative agreement with the predictions of the asymptotic theory when a/Lx [Lt ] 1, a/Lx [Gt ] 1 or |k| a [Gt ] 1 (where k is the wavenumber).The incident turbulence affects the gross properties of the flow in the cylinder wake, but the associated velocity fluctuations are probably statistically independent of those in the incident flow.The dissipation of turbulent energy is greater in the straining flow near the cylinder than in the approach flow. Some estimates for this effect are proposed.


Author(s):  
Vladimir V. Golubev

In this work, two different numerical methods of time-accurate nonlinear analysis are reviewed and compared in application to the problem of nonlinear unsteady aerodynamic and aeroacoustic airfoil responses to a high-intensity impinging gust. The incident perturbation field is of finite amplitude relative to the mean flow so that in general, no assumption of a linear superposition of responses from each individual harmonic can be made. Thus, in addition to providing a comparison of two different approaches in computational aeroacoustics, the paper achieves the objective of obtaining verified solutions determining the limits of validity for linearized methods, universally accepted in studies of unsteady aerodynamics and aeroacoustics. The work investigates nonlinear near- and far-field responses of a Joukowksi airfoil in the parametric space of gust intensity and frequency.


2002 ◽  
Vol 465 ◽  
pp. 213-235 ◽  
Author(s):  
D. R. GRAHAM ◽  
J. J. L. HIGDON

Oscillatory forcing of a porous medium may have a dramatic effect on the mean flow rate produced by a steady applied pressure gradient. The oscillatory forcing may excite nonlinear inertial effects leading to either enhancement or retardation of the mean flow. Here, in Part 1, we consider the effects of non-zero inertial forces on steady flows in porous media, and investigate the changes in the flow character arising from changes in both the strength of the inertial terms and the geometry of the medium. The steady-state Navier–Stokes equations are solved via a Galerkin finite element method to determine the velocity fields for simple two-dimensional models of porous media. Two geometric models are considered based on constricted channels and periodic arrays of circular cylinders. For both geometries, we observe solution multiplicity yielding both symmetric and asymmetric flow patterns. For the cylinder arrays, we demonstrate that inertial effects lead to anisotropy in the effective permeability, with the direction of minimum resistance dependent on the solid volume fraction. We identify nonlinear flow phenomena which might be exploited by oscillatory forcing to yield a net increase in the mean flow rate. In Part 2, we take up the subject of unsteady flows governed by the full time-dependent Navier–Stokes equations.


1999 ◽  
Vol 122 (1) ◽  
pp. 179-183 ◽  
Author(s):  
Robert E. Spall ◽  
Blake M. Ashby

Solutions to the incompressible Reynolds-averaged Navier–Stokes equations have been obtained for turbulent vortex breakdown within a slightly diverging tube. Inlet boundary conditions were derived from available experimental data for the mean flow and turbulence kinetic energy. The performance of both two-equation and full differential Reynolds stress models was evaluated. Axisymmetric results revealed that the initiation of vortex breakdown was reasonably well predicted by the differential Reynolds stress model. However, the standard K-ε model failed to predict the occurrence of breakdown. The differential Reynolds stress model also predicted satisfactorily the mean azimuthal and axial velocity profiles downstream of the breakdown, whereas results using the K-ε model were unsatisfactory. [S0098-2202(00)01601-1]


Sign in / Sign up

Export Citation Format

Share Document