scholarly journals Bayesian calibration of an avalanche model from autocorrelated measurements along the flow: application to velocities extracted from photogrammetric images

2020 ◽  
Vol 66 (257) ◽  
pp. 373-385
Author(s):  
María Belén Heredia ◽  
Nicolas Eckert ◽  
Clémentine Prieur ◽  
Emmanuel Thibert

AbstractPhysically-based avalanche propagation models must still be locally calibrated to provide robust predictions, e.g. in long-term forecasting and subsequent risk assessment. Friction parameters cannot be measured directly and need to be estimated from observations. Rich and diverse data are now increasingly available from test-sites, but for measurements made along flow propagation, potential autocorrelation should be explicitly accounted for. To this aim, this work proposes a comprehensive Bayesian calibration and statistical model selection framework. As a proof of concept, the framework was applied to an avalanche sliding block model with the standard Voellmy friction law and high rate photogrammetric images. An avalanche released at the Lautaret test-site and a synthetic data set based on the avalanche are used to test the approach and to illustrate its benefits. Results demonstrate (1) the efficiency of the proposed calibration scheme, and (2) that including autocorrelation in the statistical modelling definitely improves the accuracy of both parameter estimation and velocity predictions. Our approach could be extended without loss of generality to the calibration of any avalanche dynamics model from any type of measurement stemming from the same avalanche flow.

Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. E11-E21 ◽  
Author(s):  
Julien Guillemoteau ◽  
Pascal Sailhac ◽  
Charles Boulanger ◽  
Jérémie Trules

Ground loop-loop electromagnetic surveys are often conducted to fulfill the low-induction-number condition. To image the distribution of electric conductivity inside the ground, it is then necessary to collect a multioffset data set. We considered that less time-consuming constant offset measurements can also reach this objective. This can be achieved by performing multifrequency soundings, which are commonly performed for the airborne electromagnetic method. Ground multifrequency soundings have to be interpreted carefully because they contain high-induction-number data. These data are interpreted in two steps. First, the in-phase and out-of-phase data are converted into robust apparent conductivities valid for all the induction numbers. Second, the apparent conductivity data are inverted in 1D and 2D to obtain the true distribution of the ground conductivity. For the inversion, we used a general half-space Jacobian for the apparent conductivity valid for all the induction numbers. This method was applied and validated on synthetic data computed with the full Maxwell theory. The method was then applied on field data acquired in the test site of Provins, in the Parisian basin, France. The result revealed good agreement with borehole and geologic information, demonstrating the applicability of our method.


2020 ◽  
Author(s):  
Lungwani Muungo

Quantitative phosphoproteome and transcriptome analysisof ligand-stimulated MCF-7 human breast cancer cells wasperformed to understand the mechanisms of tamoxifen resistanceat a system level. Phosphoproteome data revealed thatWT cells were more enriched with phospho-proteins thantamoxifen-resistant cells after stimulation with ligands.Surprisingly, decreased phosphorylation after ligand perturbationwas more common than increased phosphorylation.In particular, 17?-estradiol induced down-regulation inWT cells at a very high rate. 17?-Estradiol and the ErbBligand heregulin induced almost equal numbers of up-regulatedphospho-proteins in WT cells. Pathway and motifactivity analyses using transcriptome data additionallysuggested that deregulated activation of GSK3? (glycogensynthasekinase 3?) and MAPK1/3 signaling might be associatedwith altered activation of cAMP-responsive elementbindingprotein and AP-1 transcription factors intamoxifen-resistant cells, and this hypothesis was validatedby reporter assays. An examination of clinical samples revealedthat inhibitory phosphorylation of GSK3? at serine 9was significantly lower in tamoxifen-treated breast cancerpatients that eventually had relapses, implying that activationof GSK3? may be associated with the tamoxifen-resistantphenotype. Thus, the combined phosphoproteomeand transcriptome data set analyses revealed distinct signal


Author(s):  
Raul E. Avelar ◽  
Karen Dixon ◽  
Boniphace Kutela ◽  
Sam Klump ◽  
Beth Wemple ◽  
...  

The calibration of safety performance functions (SPFs) is a mechanism included in the Highway Safety Manual (HSM) to adjust SPFs in the HSM for use in intended jurisdictions. Critically, the quality of the calibration procedure must be assessed before using the calibrated SPFs. Multiple resources to aid practitioners in calibrating SPFs have been developed in the years following the publication of the HSM 1st edition. Similarly, the literature suggests multiple ways to assess the goodness-of-fit (GOF) of a calibrated SPF to a data set from a given jurisdiction. This paper uses the calibration results of multiple intersection SPFs to a large Mississippi safety database to examine the relations between multiple GOF metrics. The goal is to develop a sensible single index that leverages the joint information from multiple GOF metrics to assess overall quality of calibration. A factor analysis applied to the calibration results revealed three underlying factors explaining 76% of the variability in the data. From these results, the authors developed an index and performed a sensitivity analysis. The key metrics were found to be, in descending order: the deviation of the cumulative residual (CURE) plot from the 95% confidence area, the mean absolute deviation, the modified R-squared, and the value of the calibration factor. This paper also presents comparisons between the index and alternative scoring strategies, as well as an effort to verify the results using synthetic data. The developed index is recommended to comprehensively assess the quality of the calibrated intersection SPFs.


Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 107
Author(s):  
Elahe Jamalinia ◽  
Faraz S. Tehrani ◽  
Susan C. Steele-Dunne ◽  
Philip J. Vardon

Climatic conditions and vegetation cover influence water flux in a dike, and potentially the dike stability. A comprehensive numerical simulation is computationally too expensive to be used for the near real-time analysis of a dike network. Therefore, this study investigates a random forest (RF) regressor to build a data-driven surrogate for a numerical model to forecast the temporal macro-stability of dikes. To that end, daily inputs and outputs of a ten-year coupled numerical simulation of an idealised dike (2009–2019) are used to create a synthetic data set, comprising features that can be observed from a dike surface, with the calculated factor of safety (FoS) as the target variable. The data set before 2018 is split into training and testing sets to build and train the RF. The predicted FoS is strongly correlated with the numerical FoS for data that belong to the test set (before 2018). However, the trained model shows lower performance for data in the evaluation set (after 2018) if further surface cracking occurs. This proof-of-concept shows that a data-driven surrogate can be used to determine dike stability for conditions similar to the training data, which could be used to identify vulnerable locations in a dike network for further examination.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. U67-U76 ◽  
Author(s):  
Robert J. Ferguson

The possibility of improving regularization/datuming of seismic data is investigated by treating wavefield extrapolation as an inversion problem. Weighted, damped least squares is then used to produce the regularized/datumed wavefield. Regularization/datuming is extremely costly because of computing the Hessian, so an efficient approximation is introduced. Approximation is achieved by computing a limited number of diagonals in the operators involved. Real and synthetic data examples demonstrate the utility of this approach. For synthetic data, regularization/datuming is demonstrated for large extrapolation distances using a highly irregular recording array. Without approximation, regularization/datuming returns a regularized wavefield with reduced operator artifacts when compared to a nonregularizing method such as generalized phase shift plus interpolation (PSPI). Approximate regularization/datuming returns a regularized wavefield for approximately two orders of magnitude less in cost; but it is dip limited, though in a controllable way, compared to the full method. The Foothills structural data set, a freely available data set from the Rocky Mountains of Canada, demonstrates application to real data. The data have highly irregular sampling along the shot coordinate, and they suffer from significant near-surface effects. Approximate regularization/datuming returns common receiver data that are superior in appearance compared to conventional datuming.


2014 ◽  
Vol 7 (3) ◽  
pp. 781-797 ◽  
Author(s):  
P. Paatero ◽  
S. Eberly ◽  
S. G. Brown ◽  
G. A. Norris

Abstract. The EPA PMF (Environmental Protection Agency positive matrix factorization) version 5.0 and the underlying multilinear engine-executable ME-2 contain three methods for estimating uncertainty in factor analytic models: classical bootstrap (BS), displacement of factor elements (DISP), and bootstrap enhanced by displacement of factor elements (BS-DISP). The goal of these methods is to capture the uncertainty of PMF analyses due to random errors and rotational ambiguity. It is shown that the three methods complement each other: depending on characteristics of the data set, one method may provide better results than the other two. Results are presented using synthetic data sets, including interpretation of diagnostics, and recommendations are given for parameters to report when documenting uncertainty estimates from EPA PMF or ME-2 applications.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. C81-C92 ◽  
Author(s):  
Helene Hafslund Veire ◽  
Hilde Grude Borgos ◽  
Martin Landrø

Effects of pressure and fluid saturation can have the same degree of impact on seismic amplitudes and differential traveltimes in the reservoir interval; thus, they are often inseparable by analysis of a single stacked seismic data set. In such cases, time-lapse AVO analysis offers an opportunity to discriminate between the two effects. We quantify the uncertainty in estimations to utilize information about pressure- and saturation-related changes in reservoir modeling and simulation. One way of analyzing uncertainties is to formulate the problem in a Bayesian framework. Here, the solution of the problem will be represented by a probability density function (PDF), providing estimations of uncertainties as well as direct estimations of the properties. A stochastic model for estimation of pressure and saturation changes from time-lapse seismic AVO data is investigated within a Bayesian framework. Well-known rock physical relationships are used to set up a prior stochastic model. PP reflection coefficient differences are used to establish a likelihood model for linking reservoir variables and time-lapse seismic data. The methodology incorporates correlation between different variables of the model as well as spatial dependencies for each of the variables. In addition, information about possible bottlenecks causing large uncertainties in the estimations can be identified through sensitivity analysis of the system. The method has been tested on 1D synthetic data and on field time-lapse seismic AVO data from the Gullfaks Field in the North Sea.


2019 ◽  
Vol 217 (3) ◽  
pp. 1727-1741 ◽  
Author(s):  
D W Vasco ◽  
Seiji Nakagawa ◽  
Petr Petrov ◽  
Greg Newman

SUMMARY We introduce a new approach for locating earthquakes using arrival times derived from waveforms. The most costly computational step of the algorithm scales as the number of stations in the active seismographic network. In this approach, a variation on existing grid search methods, a series of full waveform simulations are conducted for all receiver locations, with sources positioned successively at each station. The traveltime field over the region of interest is calculated by applying a phase picking algorithm to the numerical wavefields produced from each simulation. An event is located by subtracting the stored traveltime field from the arrival time at each station. This provides a shifted and time-reversed traveltime field for each station. The shifted and time-reversed fields all approach the origin time of the event at the source location. The mean or median value at the source location thus approximates the event origin time. Measures of dispersion about this mean or median time at each grid point, such as the sample standard error and the average deviation, are minimized at the correct source position. Uncertainty in the event position is provided by the contours of standard error defined over the grid. An application of this technique to a synthetic data set indicates that the approach provides stable locations even when the traveltimes are contaminated by additive random noise containing a significant number of outliers and velocity model errors. It is found that the waveform-based method out-performs one based upon the eikonal equation for a velocity model with rapid spatial variations in properties due to layering. A comparison with conventional location algorithms in both a laboratory and field setting demonstrates that the technique performs at least as well as existing techniques.


2010 ◽  
Vol 14 (3) ◽  
pp. 545-556 ◽  
Author(s):  
J. Rings ◽  
J. A. Huisman ◽  
H. Vereecken

Abstract. Coupled hydrogeophysical methods infer hydrological and petrophysical parameters directly from geophysical measurements. Widespread methods do not explicitly recognize uncertainty in parameter estimates. Therefore, we apply a sequential Bayesian framework that provides updates of state, parameters and their uncertainty whenever measurements become available. We have coupled a hydrological and an electrical resistivity tomography (ERT) forward code in a particle filtering framework. First, we analyze a synthetic data set of lysimeter infiltration monitored with ERT. In a second step, we apply the approach to field data measured during an infiltration event on a full-scale dike model. For the synthetic data, the water content distribution and the hydraulic conductivity are accurately estimated after a few time steps. For the field data, hydraulic parameters are successfully estimated from water content measurements made with spatial time domain reflectometry and ERT, and the development of their posterior distributions is shown.


Author(s):  
Danlei Xu ◽  
Lan Du ◽  
Hongwei Liu ◽  
Penghui Wang

A Bayesian classifier for sparsity-promoting feature selection is developed in this paper, where a set of nonlinear mappings for the original data is performed as a pre-processing step. The linear classification model with such mappings from the original input space to a nonlinear transformation space can not only construct the nonlinear classification boundary, but also realize the feature selection for the original data. A zero-mean Gaussian prior with Gamma precision and a finite approximation of Beta process prior are used to promote sparsity in the utilization of features and nonlinear mappings in our model, respectively. We derive the Variational Bayesian (VB) inference algorithm for the proposed linear classifier. Experimental results based on the synthetic data set, measured radar data set, high-dimensional gene expression data set, and several benchmark data sets demonstrate the aggressive and robust feature selection capability and comparable classification accuracy of our method comparing with some other existing classifiers.


Sign in / Sign up

Export Citation Format

Share Document