Cosmogenic nuclide age estimate for Laurentide Ice Sheet recession from the terminal moraine, New Jersey, USA, and constraints on latest Pleistocene ice sheet history

2017 ◽  
Vol 87 (3) ◽  
pp. 482-498 ◽  
Author(s):  
Lee B. Corbett ◽  
Paul R. Bierman ◽  
Byron D. Stone ◽  
Marc W. Caffee ◽  
Patrick L. Larsen

AbstractThe time at which the Laurentide Ice Sheet reached its maximum extent and subsequently retreated from its terminal moraine in New Jersey has been constrained by bracketing radiocarbon ages on preglacial and postglacial sediments. Here, we present measurements of in situ produced 10Be and 26Al in 16 quartz-bearing samples collected from bedrock outcrops and glacial erratics just north of the terminal moraine in north-central New Jersey; as such, our ages represent a minimum limit on the timing of ice recession from the moraine. The data set includes field and laboratory replicates, as well as replication of the entire data set five years after initial measurement. We find that recession of the Laurentide Ice Sheet from the terminal moraine in New Jersey began before 25.2±2.1 ka (10Be, n=16, average, 1 standard deviation). This cosmogenic nuclide exposure age is consistent with existing limiting radiocarbon ages in the study area and cosmogenic nuclide exposure ages from the terminal moraine on Martha’s Vineyard ~300 km to the northeast. The age we propose for Laurentide Ice Sheet retreat from the New Jersey terminal position is broadly consistent with regional and global climate records of the last glacial maximum termination and records of fluvial incision.

2020 ◽  
Author(s):  
Christopher Halsted ◽  
Jeremy Shakun ◽  
Lee Corbett ◽  
Paul Bierman ◽  
P. Thompson Davis ◽  
...  

<p>In the northeastern United States, there are extensive geochronologic and geomorphic constraints on the deglaciation of the southeastern Laurentide Ice Sheet; thus, it is an ideal area for large-scale ice volume reconstructions and comparison between different ice retreat chronometers. Varve chronologies, lake and bog-bottom radiocarbon ages, and cosmogenic nuclide exposure ages constrain the timing of ice retreat, but the inferred ages exhibit considerable noise and sometimes disagree. Additionally, there are few empirical constraints on ice thinning, forcing ice volume reconstructions to rely on geophysically-based ice thickness models. Here, we aim to improve the understanding of the southeastern Laurentide Ice Sheet recession by (1) adding extensive ice thickness constraints and (2) compiling all available deglacial chronology data in the region to investigate discrepancies between different chronometers.</p><p>To provide insight about ice sheet thinning history, we collected 120 samples for in-situ <sup>10</sup>Be and 10 samples for in-situ <sup>14</sup>C cosmogenic exposure dating from various elevations at 13 mountains in the northeastern United States. By calculating ages of exposure at different elevations across this region, we reconstruct paleo-ice surface lowering of the southeastern Laurentide Ice Sheet during deglaciation. Where we suspect that <sup>10</sup>Be remains from pre-Last Glacial Maximum periods of exposure, in-situ <sup>14</sup>C is used to infer the erosional history and minimum exposure age of samples.</p><p>Presently, we have measured <sup>10</sup>Be in 73 samples. Mountain-top exposure ages located within 150 km of the southeastern Laurentide Ice Sheet terminal moraine indicate that near-margin thinning began early in the deglacial period (~19.5 to 17.5 ka), coincident with the slow initial margin retreat indicated by varve records. Exposure ages from several mountains further inland (>400 km north of terminal moraine) collected over ~1000 m of elevation range record rapid ice thinning between 14.5 and 13 ka. Ages within each of these vertical transects are similar within 1σ internal uncertainty, indicating that ice thinned quickly, less than a few hundred years at most. This rapid thinning occurred at about the same time that varve records indicate accelerated ice margin retreat (14.6–12.9 ka), providing evidence of substantial ice volume loss during the Bølling-Allerød warm period.</p><p>Our critical evaluation of deglacial chronometers, including valley-bottom <sup>10</sup>Be ages from this project, is intended to constrain ice margin retreat rates and timing in the region. Ultimately, we will integrate our ice thickness over time constraints with the existing network of deglacial ages to create a probabilistic reconstructions of the southeastern Laurentide Ice Sheet volume during its recession through the northeastern United States.</p>


2007 ◽  
Vol 20 (20) ◽  
pp. 5126-5133 ◽  
Author(s):  
Anders E. Carlson ◽  
Peter U. Clark ◽  
Grant M. Raisbeck ◽  
Edward J. Brook

Abstract Retreat of the Laurentide Ice Sheet (LIS) following the Last Glacial Maximum 21 000 yr BP affected regional to global climate and accounted for the largest proportion of sea level rise. Although the late Pleistocene LIS retreat chronology is relatively well constrained, its Holocene chronology remains poorly dated, limiting our understanding of its role in Holocene climate change and sea level rise. Here new 10Be cosmogenic exposure ages on glacially deposited boulders are used to date the final disappearance of the Labrador sector of the LIS (LS-LIS). These data suggest that following the deglaciation of the southeastern Hudson Bay coastline at 8.0 ± 0.2 cal ka BP, the southwestern margin of the LS-LIS rapidly retreated ∼600 km in 140 yr and most likely in ∼600 yr at a rate of ∼900 m yr−1, with final deglaciation by 6.8 ± 0.2 10Be ka. The disappearance of the LS-LIS ∼6.8 10Be ka and attendant reduction in freshwater runoff may have induced the formation of Labrador Deep Seawater, while the loss of the high albedo surface may have initiated the Holocene Thermal Maximum in eastern Canada and southern Greenland. Moreover, the rapid melting just prior to ∼6.8 10Be ka indicates that the remnant LIS may be the primary source of a postulated rapid rise in global sea level of ∼5 m that occurred sometime between 7.6 and 6.5 cal ka BP.


2018 ◽  
Author(s):  
Christopher T. Halsted ◽  
◽  
Jeremy D. Shakun ◽  
Lee B. Corbett ◽  
Paul R. Bierman ◽  
...  

2006 ◽  
Vol 25 (9-10) ◽  
pp. 1097-1109 ◽  
Author(s):  
Henriette Linge ◽  
Edward J. Brook ◽  
Atle Nesje ◽  
Grant M. Raisbeck ◽  
Françoise Yiou ◽  
...  

2019 ◽  
Vol 13 (11) ◽  
pp. 2935-2951 ◽  
Author(s):  
Keir A. Nichols ◽  
Brent M. Goehring ◽  
Greg Balco ◽  
Joanne S. Johnson ◽  
Andrew S. Hein ◽  
...  

Abstract. We describe new Last Glacial Maximum (LGM) ice thickness constraints for three locations spanning the Weddell Sea Embayment (WSE) of Antarctica. Samples collected from the Shackleton Range, Pensacola Mountains, and the Lassiter Coast constrain the LGM thickness of the Slessor Glacier, Foundation Ice Stream, and grounded ice proximal to the modern Ronne Ice Shelf edge on the Antarctic Peninsula, respectively. Previous attempts to reconstruct LGM-to-present ice thickness changes around the WSE used measurements of long-lived cosmogenic nuclides, primarily 10Be. An absence of post-LGM apparent exposure ages at many sites led to LGM thickness reconstructions that were spatially highly variable and inconsistent with flow line modelling. Estimates for the contribution of the ice sheet occupying the WSE at the LGM to global sea level since deglaciation vary by an order of magnitude, from 1.4 to 14.1 m of sea level equivalent. Here we use a short-lived cosmogenic nuclide, in situ-produced 14C, which is less susceptible to inheritance problems than 10Be and other long-lived nuclides. We use in situ 14C to evaluate the possibility that sites with no post-LGM exposure ages are biased by cosmogenic nuclide inheritance due to surface preservation by cold-based ice and non-deposition of LGM-aged drift. Our measurements show that the Slessor Glacier was between 310 and up to 655 m thicker than present at the LGM. The Foundation Ice Stream was at least 800 m thicker, and ice on the Lassiter Coast was at least 385 m thicker than present at the LGM. With evidence for LGM thickening at all of our study sites, our in situ 14C measurements indicate that the long-lived nuclide measurements of previous studies were influenced by cosmogenic nuclide inheritance. Our inferred LGM configuration, which is primarily based on minimum ice thickness constraints and thus does not constrain an upper limit, indicates a relatively modest contribution to sea level rise since the LGM of < 4.6 m, and possibly as little as < 1.5 m.


2015 ◽  
Vol 9 (3) ◽  
pp. 905-923 ◽  
Author(s):  
S. E. Moustafa ◽  
A. K. Rennermalm ◽  
L. C. Smith ◽  
M. A. Miller ◽  
J. R. Mioduszewski ◽  
...  

Abstract. Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface and, thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates, earlier snowmelt, and amplified melt–albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation area albedo and meltwater production is still relatively unknown. In this study, we analyze albedo and ablation rates using in situ and remotely sensed data. Observations include (1) a new high-quality in situ spectral albedo data set collected with an Analytical Spectral Devices Inc. spectroradiometer measuring at 325–1075 nm along a 1.25 km transect during 3 days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August 2012 and 2013. We find that seasonal ablation area albedos in 2013 have a bimodal distribution, with snow and ice facies characterizing the two peaks. Our results show that a shift from a distribution dominated by high to low albedos corresponds to an observed melt rate increase of 51.5% (between 10–14 July and 20–24 July 2013). In contrast, melt rate variability caused by albedo changes before and after this shift was much lower and varied between ~10 and 30% in the melting season. Ablation area albedos in 2012 exhibited a more complex multimodal distribution, reflecting a transition from light to dark-dominated surface, as well as sensitivity to the so called "dark-band" region in southwest Greenland. In addition to a darkening surface from ice crystal growth, our findings demonstrate that seasonal changes in GrIS ablation area albedos are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. Thus, seasonal variability in ablation area albedos appears to be regulated primarily as a function of bare ice expansion at the expense of snow, surface meltwater ponding, and melting of outcropped ice layers enriched with mineral materials, enabling dust and impurities to accumulate. As climate change continues in the Arctic region, understanding the seasonal evolution of ice sheet surface types in Greenland's ablation area is critical to improve projections of mass loss contributions to sea level rise.


2019 ◽  
Vol 94 ◽  
pp. 80-93
Author(s):  
Gordon R.M. Bromley ◽  
Brenda L. Hall ◽  
Woodrow B. Thompson ◽  
Thomas V. Lowell

AbstractAt its late Pleistocene maximum, the Laurentide Ice Sheet was the largest ice mass on Earth and a key player in the modulation of global climate and sea level. At the same time, this temperate ice sheet was itself sensitive to climate, and high-magnitude fluctuations in ice extent, reconstructed from relict glacial deposits, reflect past changes in atmospheric temperature. Here, we present a cosmogenic 10Be surface-exposure chronology for the Berlin moraines in the White Mountains of northern New Hampshire, USA, which supports the model that deglaciation of New England was interrupted by a pronounced advance of ice during the Bølling-Allerød. Together with recalculated 10Be ages from the southern New England coast, the expanded White Mountains moraine chronology also brackets the timing of ice sheet retreat in this sector of the Laurentide. In conjunction with existing chronological data, the moraine ages presented here suggest that deglaciation was widespread during Heinrich Stadial 1 event (~18–14.7 ka) despite apparently cold marine conditions in the adjacent North Atlantic. As part of the White Mountains moraine system, the Berlin chronology also places a new terrestrial constraint on the former glacial configuration during the marine incursion of the St. Lawrence River valley north of the White Mountains.


2004 ◽  
Vol 61 (3) ◽  
pp. 335-338 ◽  
Author(s):  
Kevin Kiernan ◽  
L. Keith Fifield ◽  
John Chappell

Moraines on Schnells Ridge, southwest Tasmania, have been dated using in situ 10Be. An age of 19,400 ± 600 yr is indicated for the well-preserved innermost moraine from consistent measurements on four large quartzite boulders. This corresponds closely with exposure ages reported by T.T. Barrows et al. (2002, Quaternary Science Reviews 21, 159–173) for Last Glacial Maximum glacial features farther north in Tasmania and southeast Australia. In contrast, ages between 39,000 and 141,000 yr were obtained from a series of boulders on a more extensive outer moraine, indicating that this has had a more complex history.


2019 ◽  
Author(s):  
Keir A. Nichols ◽  
Brent M. Goehring ◽  
Greg Balco ◽  
Joanne S. Johnson ◽  
Andrew A. Hein ◽  
...  

Abstract. This paper describes new Last Glacial Maximum (LGM) ice thickness constraints for three locations spanning the Weddell Sea Embayment (WSE) of Antarctica. Samples collected from the Shackleton Range, Pensacola Mountains, and the Lassiter Coast constrain the LGM thickness of the Slessor Glacier, Foundation Ice Stream, and grounded ice proximal to the modern Ronne Ice Shelf Edge on the Antarctic Peninsula, respectively. Previous attempts to reconstruct LGM-to-present ice thickness changes around the WSE used measurements of long-lived cosmogenic nuclides, primarily 10Be. An absence of post-LGM apparent exposure ages at many sites led to LGM thickness reconstructions that were spatially highly variable, and inconsistent with flowline modeling. Estimates for the contribution of the ice sheet occupying the WSE at the LGM to global sea level since deglaciation vary by an order of magnitude, from 1.4 to 14.1 m of sea level equivalent. Here we use a cosmogenic nuclide, in situ produced 14C, to evaluate the possibility that sites with no post-LGM exposure ages are biased by cosmogenic nuclide inheritance due to surface preservation by cold-based ice and nondeposition of LGM-aged drift. Our measurements show that the Slessor Glacier was between 310 and 650 m thicker than present at the LGM. The Foundation Ice Stream was at least 800 m thicker, and ice on the Lassiter Coast was at least 385 m thicker than present at the LGM. With evidence for LGM thickening at all of our study sites, our in situ 14C measurements indicate that the long-lived nuclide measurements of previous studies were influenced by cosmogenic nuclide inheritance. Our LGM thickness constraints point toward a modest contribution from the Weddell Sea Embayment to global sea-level since deglaciation, with an estimated range of 2.2 to 5.8 m.


2015 ◽  
Vol 52 (11) ◽  
pp. 966-979 ◽  
Author(s):  
Karin Ebert

The erosional impacts of former ice sheets on the low-relief bedrock surfaces of Northern Hemisphere shields are not well understood. This paper assesses the variable impacts of glacial erosion on a portion of Baffin Island, eastern Canadian Arctic, between 68° and 72°N and 66° and 80°W. This tilted shield block was covered repeatedly by the Laurentide Ice Sheet during the late Cenozoic. The impact of ice-sheet erosion is examined with GIS analyses using two geomorphic parameters: lake density and terrain ruggedness. The resulting patterns generally conform to published data from other remote sensing studies, geological observations, cosmogenic exposure ages, and the distribution of the chemical index of alteration for tills. Lake density and terrain ruggedness are thereby demonstrated to be useful quantitative indicators of variable ice-sheet erosional impacts across Baffin Island. Ice-sheet erosion was most effective in the lower western parts of the lowlands, in a west–east-oriented band at around 350–400 m a.s.l., and in fjord-onset zones in the uplifted eastern region. Above the 350–400 m a.s.l. band and between the fjord-onset zones, ice-sheet erosion was not sufficient to create extensive ice-roughened or streamlined bedrock surfaces. The exception — where lake density and terrain ruggedness indicate that ice-sheet erosion had a scouring effect all across the study area — was in an area from Foxe Basin to Home Bay with elevations <400 m a.s.l. These morphological contrasts link to former ice-sheet basal thermal regimes during the Pleistocene. The zone of low glacial erosion surrounding the cold-based Barnes Ice Cap probably represents the ice cap’s greater extent during successive Pleistocene cold stages. Inter-fjord plateaus with few ice-sheet bedforms remained cold-based throughout multiple Pleistocene glaciations. In contrast, zones of high lake density and high terrain ruggedness are a result of the repeated development of fast-flowing, erosive ice in warm-based zones beneath the Laurentide Ice Sheet. These zones are linked to greater ice thickness over western lowland Baffin Island. However, adjacent lowland surfaces with similar elevations of non-eroded, weakly eroded, and ice-scoured shield bedrock indicate that—even in areas of high lake density and terrain ruggedness—the total depth of ice sheet erosion did not exceed 50 m.


Sign in / Sign up

Export Citation Format

Share Document