Conditions for exponential ergodicity and bounds for the decay parameter of a birth-death process

1985 ◽  
Vol 17 (03) ◽  
pp. 514-530 ◽  
Author(s):  
Erik A. Van Doorn

This paper is concerned with two problems in connection with exponential ergodicity for birth-death processes on a semi-infinite lattice of integers. The first is to determine from the birth and death rates whether exponential ergodicity prevails. We give some necessary and some sufficient conditions which suffice to settle the question for most processes encountered in practice. In particular, a complete solution is obtained for processes where, from some finite state n onwards, the birth and death rates are rational functions of n. The second, more difficult, problem is to evaluate the decay parameter of an exponentially ergodic birth-death process. Our contribution to the solution of this problem consists of a number of upper and lower bounds.

1985 ◽  
Vol 17 (3) ◽  
pp. 514-530 ◽  
Author(s):  
Erik A. Van Doorn

This paper is concerned with two problems in connection with exponential ergodicity for birth-death processes on a semi-infinite lattice of integers. The first is to determine from the birth and death rates whether exponential ergodicity prevails. We give some necessary and some sufficient conditions which suffice to settle the question for most processes encountered in practice. In particular, a complete solution is obtained for processes where, from some finite state n onwards, the birth and death rates are rational functions of n. The second, more difficult, problem is to evaluate the decay parameter of an exponentially ergodic birth-death process. Our contribution to the solution of this problem consists of a number of upper and lower bounds.


2015 ◽  
Vol 52 (1) ◽  
pp. 278-289 ◽  
Author(s):  
Erik A. van Doorn

We study the decay parameter (the rate of convergence of the transition probabilities) of a birth-death process on {0, 1, …}, which we allow to evanesce by escape, via state 0, to an absorbing state -1. Our main results are representations for the decay parameter under four different scenarios, derived from a unified perspective involving the orthogonal polynomials appearing in Karlin and McGregor's representation for the transition probabilities of a birth-death process, and the Courant-Fischer theorem on eigenvalues of a symmetric matrix. We also show how the representations readily yield some upper and lower bounds that have appeared in the literature.


2015 ◽  
Vol 52 (01) ◽  
pp. 278-289 ◽  
Author(s):  
Erik A. van Doorn

We study the decay parameter (the rate of convergence of the transition probabilities) of a birth-death process on {0, 1, …}, which we allow to evanesce by escape, via state 0, to an absorbing state -1. Our main results are representations for the decay parameter under four different scenarios, derived from a unified perspective involving the orthogonal polynomials appearing in Karlin and McGregor's representation for the transition probabilities of a birth-death process, and the Courant-Fischer theorem on eigenvalues of a symmetric matrix. We also show how the representations readily yield some upper and lower bounds that have appeared in the literature.


1986 ◽  
Vol 23 (04) ◽  
pp. 1013-1018
Author(s):  
B. G. Quinn ◽  
H. L. MacGillivray

Sufficient conditions are presented for the limiting normality of sequences of discrete random variables possessing unimodal distributions. The conditions are applied to obtain normal approximations directly for the hypergeometric distribution and the stationary distribution of a special birth-death process.


1987 ◽  
Vol 1 (4) ◽  
pp. 367-381 ◽  
Author(s):  
Julian Keilson ◽  
Ravi Ramaswamy

The relaxation time for an ergodic Markov process is a measure of the time until ergodicity is reached from its initial state. In this paper the relaxation time for an ergodic truncated birth-death process is studied. It is shown that the relaxation time for such a process on states {0,1, …, N} is the quasi-stationary exit time from the set {,2, …, N{0,1,…, N, N + 1} with two-sided absorption at states 0 and N + 1. The existence of such a dual process has been observed by Siegmund [15] for stochastically monotone Markov processes on the real line. Exit times for birth- death processes with two absorbing states are studied and an efficient algorithm for the numerical evaluation of mean exit times is presented. Simple analytical lower bounds for the relaxation times are obtained. These bounds are numerically accessible. Finally, the sensitivity of the relaxation time to variations in birth and death rates is studied.


2019 ◽  
Author(s):  
Andrew F. Magee ◽  
Sebastian Höhna ◽  
Tetyana I. Vasylyeva ◽  
Adam D. Leaché ◽  
Vladimir N. Minin

AbstractBirth-death processes have given biologists a model-based framework to answer questions about changes in the birth and death rates of lineages in a phylogenetic tree. Therefore birth-death models are central to macroevolutionary as well as phylodynamic analyses. Early approaches to studying temporal variation in birth and death rates using birth-death models faced difficulties due to the restrictive choices of birth and death rate curves through time. Sufficiently flexible time-varying birth-death models are still lacking. We use a piecewise-constant birth-death model, combined with both Gaussian Markov random field (GMRF) and horseshoe Markov random field (HSMRF) prior distributions, to approximate arbitrary changes in birth rate through time. We implement these models in the widely used statistical phylogenetic software platform RevBayes, allowing us to jointly estimate birth-death process parameters, phylogeny, and nuisance parameters in a Bayesian framework. We test both GMRF-based and HSMRF-based models on a variety of simulated diversification scenarios, and then apply them to both a macroevolutionary and an epidemiological dataset. We find that both models are capable of inferring variable birth rates and correctly rejecting variable models in favor of effectively constant models. In general the HSMRF-based model has higher precision than its GMRF counterpart, with little to no loss of accuracy. Applied to a macroevolutionary dataset of the Australian gecko family Pygopodidae (where birth rates are interpretable as speciation rates), the GMRF-based model detects a slow decrease whereas the HSMRF-based model detects a rapid speciation-rate decrease in the last 12 million years. Applied to an infectious disease phylodynamic dataset of sequences from HIV subtype A in Russia and Ukraine (where birth rates are interpretable as the rate of accumulation of new infections), our models detect a strongly elevated rate of infection in the 1990s.Author summaryBoth the growth of groups of species and the spread of infectious diseases through populations can be modeled as birth-death processes. Birth events correspond either to speciation or infection, and death events to extinction or becoming noninfectious. The rates of birth and death may vary over time, and by examining this variation researchers can pinpoint important events in the history of life on Earth or in the course of an outbreak. Time-calibrated phylogenies track the relationships between a set of species (or infections) and the times of all speciation (or infection) events, and can thus be used to infer birth and death rates. We develop two phylogenetic birth-death models with the goal of discerning signal of rate variation from noise due to the stochastic nature of birth-death models. Using a variety of simulated datasets, we show that one of these models can accurately infer slow and rapid rate shifts without sacrificing precision. Using real data, we demonstrate that our new methodology can be used for simultaneous inference of phylogeny and rates through time.


2012 ◽  
Vol 49 (4) ◽  
pp. 1036-1051 ◽  
Author(s):  
Damian Clancy

For a sequence of finite state space birth–death processes, each having a single absorbing state, we show that, under certain conditions, as the size of the state space tends to infinity, the quasistationary distributions converge to the stationary distribution of a limiting infinite state space birth–death process. This generalizes a result of Keilson and Ramaswamy by allowing birth and death rates to depend upon the size of the state space. We give sufficient conditions under which the convergence result of Keilson and Ramaswamy remains valid. The generalization allows us to apply our convergence result to examples from population biology: a Pearl–Verhulst logistic population growth model and the susceptible-infective-susceptible (SIS) model for infectious spread. The limit distributions obtained suggest new finite-population approximations to the quasistationary distributions of these models, obtained by the method of cumulant closure. The new approximations are found to be both simple in form and accurate.


1986 ◽  
Vol 23 (04) ◽  
pp. 1013-1018 ◽  
Author(s):  
B. G. Quinn ◽  
H. L. MacGillivray

Sufficient conditions are presented for the limiting normality of sequences of discrete random variables possessing unimodal distributions. The conditions are applied to obtain normal approximations directly for the hypergeometric distribution and the stationary distribution of a special birth-death process.


2005 ◽  
Vol 42 (01) ◽  
pp. 185-198 ◽  
Author(s):  
Erik A. Van Doorn ◽  
Alexander I. Zeifman

We study birth-death processes on the nonnegative integers, where {1, 2,…} is an irreducible class and 0 an absorbing state, with the additional feature that a transition to state 0 may occur from any state. We give a condition for absorption (extinction) to be certain and obtain the eventual absorption probabilities when absorption is not certain. We also study the rate of convergence, as t → ∞, of the probability of absorption at time t, and relate it to the common rate of convergence of the transition probabilities that do not involve state 0. Finally, we derive upper and lower bounds for the probability of absorption at time t by applying a technique that involves the logarithmic norm of an appropriately defined operator.


1969 ◽  
Vol 6 (03) ◽  
pp. 687-691 ◽  
Author(s):  
S. R. Adke

A model proposed by Bailey (1968) for migratory individuals which reproduce according to a simple birth-death process is generalized to include time dependent birth and death rates.


Sign in / Sign up

Export Citation Format

Share Document