scholarly journals Representations for the Decay Parameter of a Birth-Death Process Based on the Courant-Fischer Theorem

2015 ◽  
Vol 52 (1) ◽  
pp. 278-289 ◽  
Author(s):  
Erik A. van Doorn

We study the decay parameter (the rate of convergence of the transition probabilities) of a birth-death process on {0, 1, …}, which we allow to evanesce by escape, via state 0, to an absorbing state -1. Our main results are representations for the decay parameter under four different scenarios, derived from a unified perspective involving the orthogonal polynomials appearing in Karlin and McGregor's representation for the transition probabilities of a birth-death process, and the Courant-Fischer theorem on eigenvalues of a symmetric matrix. We also show how the representations readily yield some upper and lower bounds that have appeared in the literature.

2015 ◽  
Vol 52 (01) ◽  
pp. 278-289 ◽  
Author(s):  
Erik A. van Doorn

We study the decay parameter (the rate of convergence of the transition probabilities) of a birth-death process on {0, 1, …}, which we allow to evanesce by escape, via state 0, to an absorbing state -1. Our main results are representations for the decay parameter under four different scenarios, derived from a unified perspective involving the orthogonal polynomials appearing in Karlin and McGregor's representation for the transition probabilities of a birth-death process, and the Courant-Fischer theorem on eigenvalues of a symmetric matrix. We also show how the representations readily yield some upper and lower bounds that have appeared in the literature.


2005 ◽  
Vol 42 (01) ◽  
pp. 185-198 ◽  
Author(s):  
Erik A. Van Doorn ◽  
Alexander I. Zeifman

We study birth-death processes on the nonnegative integers, where {1, 2,…} is an irreducible class and 0 an absorbing state, with the additional feature that a transition to state 0 may occur from any state. We give a condition for absorption (extinction) to be certain and obtain the eventual absorption probabilities when absorption is not certain. We also study the rate of convergence, as t → ∞, of the probability of absorption at time t, and relate it to the common rate of convergence of the transition probabilities that do not involve state 0. Finally, we derive upper and lower bounds for the probability of absorption at time t by applying a technique that involves the logarithmic norm of an appropriately defined operator.


2005 ◽  
Vol 42 (1) ◽  
pp. 185-198 ◽  
Author(s):  
Erik A. Van Doorn ◽  
Alexander I. Zeifman

We study birth-death processes on the nonnegative integers, where {1, 2,…} is an irreducible class and 0 an absorbing state, with the additional feature that a transition to state 0 may occur from any state. We give a condition for absorption (extinction) to be certain and obtain the eventual absorption probabilities when absorption is not certain. We also study the rate of convergence, as t → ∞, of the probability of absorption at time t, and relate it to the common rate of convergence of the transition probabilities that do not involve state 0. Finally, we derive upper and lower bounds for the probability of absorption at time t by applying a technique that involves the logarithmic norm of an appropriately defined operator.


2006 ◽  
Vol 2006 ◽  
pp. 1-15 ◽  
Author(s):  
Pauline Coolen-Schrijner ◽  
Erik A. van Doorn

The Karlin-McGregor representation for the transition probabilities of a birth-death process with an absorbing bottom state involves a sequence of orthogonal polynomials and the corresponding measure. This representation can be generalized to a setting in which a transition to the absorbing state (killing) is possible from any state rather than just one state. The purpose of this paper is to investigate to what extent properties of birth-death processes, in particular with regard to the existence of quasi-stationary distributions, remain valid in the generalized setting. It turns out that the elegant structure of the theory of quasi-stationarity for birth-death processes remains largely intact as long as killing is possible from only finitely many states. In particular, the existence of a quasi-stationary distribution is ensured in this case if absorption is certain and the state probabilities tend to zero exponentially fast.


2013 ◽  
Vol 50 (01) ◽  
pp. 114-126 ◽  
Author(s):  
Hanjun Zhang ◽  
Yixia Zhu

We consider a birth–death process {X(t),t≥0} on the positive integers for which the origin is an absorbing state with birth coefficients λ n ,n≥0, and death coefficients μ n ,n≥0. If we define A=∑ n=1 ∞ 1/λ n π n and S=∑ n=1 ∞ (1/λ n π n )∑ i=n+1 ∞ π i , where {π n ,n≥1} are the potential coefficients, it is a well-known fact (see van Doorn (1991)) that if A=∞ and S<∞, then λ C >0 and there is precisely one quasistationary distribution, namely, {a j (λ C )}, where λ C is the decay parameter of {X(t),t≥0} in C={1,2,...} and a j (x)≡μ1 -1π j xQ j (x), j=1,2,.... In this paper we prove that there is a unique quasistationary distribution that attracts all initial distributions supported in C, if and only if the birth–death process {X(t),t≥0} satisfies bothA=∞ and S<∞. That is, for any probability measure M={m i , i=1,2,...}, we have lim t→∞ℙ M (X(t)=j∣ T>t)= a j (λ C ), j=1,2,..., where T=inf{t≥0 : X(t)=0} is the extinction time of {X(t),t≥0} if and only if the birth–death process {X(t),t≥0} satisfies both A=∞ and S<∞.


1991 ◽  
Vol 23 (4) ◽  
pp. 683-700 ◽  
Author(s):  
Erik A. Van Doorn

For a birth–death process (X(t), ) on the state space {−1, 0, 1, ·· ·}, where −1 is an absorbing state which is reached with certainty and {0, 1, ·· ·} is an irreducible class, we address and solve three problems. First, we determine the set of quasi-stationary distributions of the process, that is, the set of initial distributions which are such that the distribution of X(t), conditioned on non-absorption up to time t, is independent of t. Secondly, we determine the quasi-limiting distribution of X(t), that is, the limit as t→∞ of the distribution of X(t), conditioned on non-absorption up to time t, for any initial distribution with finite support. Thirdly, we determine the rate of convergence of the transition probabilities of X(t), conditioned on non-absorption up to time t, to their limits. Some examples conclude the paper. Our main tools are the spectral representation for the transition probabilities of a birth–death process and a duality concept for birth–death processes.


1985 ◽  
Vol 17 (3) ◽  
pp. 514-530 ◽  
Author(s):  
Erik A. Van Doorn

This paper is concerned with two problems in connection with exponential ergodicity for birth-death processes on a semi-infinite lattice of integers. The first is to determine from the birth and death rates whether exponential ergodicity prevails. We give some necessary and some sufficient conditions which suffice to settle the question for most processes encountered in practice. In particular, a complete solution is obtained for processes where, from some finite state n onwards, the birth and death rates are rational functions of n. The second, more difficult, problem is to evaluate the decay parameter of an exponentially ergodic birth-death process. Our contribution to the solution of this problem consists of a number of upper and lower bounds.


1997 ◽  
Vol 34 (01) ◽  
pp. 46-53
Author(s):  
Pauline Schrijner ◽  
Erik A. Van Doorn

We consider a discrete-time birth-death process on the non-negative integers with −1 as an absorbing state and study the limiting behaviour asn →∞ of the process conditioned on non-absorption until timen.By proving that a condition recently proposed by Martinez and Vares is vacuously true, we establish that the conditioned process is always weakly convergent when all self-transition probabilities are zero. In the aperiodic case we obtain a necessary and sufficient condition for weak convergence.


1985 ◽  
Vol 17 (03) ◽  
pp. 514-530 ◽  
Author(s):  
Erik A. Van Doorn

This paper is concerned with two problems in connection with exponential ergodicity for birth-death processes on a semi-infinite lattice of integers. The first is to determine from the birth and death rates whether exponential ergodicity prevails. We give some necessary and some sufficient conditions which suffice to settle the question for most processes encountered in practice. In particular, a complete solution is obtained for processes where, from some finite state n onwards, the birth and death rates are rational functions of n. The second, more difficult, problem is to evaluate the decay parameter of an exponentially ergodic birth-death process. Our contribution to the solution of this problem consists of a number of upper and lower bounds.


1997 ◽  
Vol 34 (1) ◽  
pp. 46-53 ◽  
Author(s):  
Pauline Schrijner ◽  
Erik A. Van Doorn

We consider a discrete-time birth-death process on the non-negative integers with −1 as an absorbing state and study the limiting behaviour as n → ∞ of the process conditioned on non-absorption until time n. By proving that a condition recently proposed by Martinez and Vares is vacuously true, we establish that the conditioned process is always weakly convergent when all self-transition probabilities are zero. In the aperiodic case we obtain a necessary and sufficient condition for weak convergence.


Sign in / Sign up

Export Citation Format

Share Document