Quasi-stationary distributions of birth-and-death processes

1978 ◽  
Vol 10 (03) ◽  
pp. 570-586 ◽  
Author(s):  
James A. Cavender

Letqn(t) be the conditioned probability of finding a birth-and-death process in statenat timet,given that absorption into state 0 has not occurred by then. A family {q1(t),q2(t), · · ·} that is constant in time is a quasi-stationary distribution. If any exist, the quasi-stationary distributions comprise a one-parameter family related to quasi-stationary distributions of finite state-space approximations to the process.

1978 ◽  
Vol 10 (3) ◽  
pp. 570-586 ◽  
Author(s):  
James A. Cavender

Let qn(t) be the conditioned probability of finding a birth-and-death process in state n at time t, given that absorption into state 0 has not occurred by then. A family {q1(t), q2(t), · · ·} that is constant in time is a quasi-stationary distribution. If any exist, the quasi-stationary distributions comprise a one-parameter family related to quasi-stationary distributions of finite state-space approximations to the process.


1987 ◽  
Vol 24 (04) ◽  
pp. 965-977 ◽  
Author(s):  
Ilze Ziedins

We discuss the quasi-stationary distribution obtained when a simple birth and death process is conditioned on never exceeding K. An application of this model to one-dimensional circuit-switched communication networks is described, and some special cases examined.


2004 ◽  
Vol 2004 (5) ◽  
pp. 469-489
Author(s):  
P. R. Parthasarathy ◽  
K. V. Vijayashree ◽  
R. B. Lenin

Fluid queue driven by a birth and death process (BDP) with only one negative effective input rate has been considered in the literature. As an alternative, here we consider a fluid queue in which the input is characterized by a BDP with alternating positive and negative flow rates on a finite state space. Also, the BDP has two alternating arrival rates and two alternating service rates. Explicit expression for the distribution function of the buffer occupancy is obtained. The case where the state space is infinite is also discussed. Graphs are presented to visualize the buffer content distribution.


1987 ◽  
Vol 24 (4) ◽  
pp. 965-977 ◽  
Author(s):  
Ilze Ziedins

We discuss the quasi-stationary distribution obtained when a simple birth and death process is conditioned on never exceeding K. An application of this model to one-dimensional circuit-switched communication networks is described, and some special cases examined.


2018 ◽  
Vol 55 (4) ◽  
pp. 1025-1036 ◽  
Author(s):  
Dario Bini ◽  
Jeffrey J. Hunter ◽  
Guy Latouche ◽  
Beatrice Meini ◽  
Peter Taylor

Abstract In their 1960 book on finite Markov chains, Kemeny and Snell established that a certain sum is invariant. The value of this sum has become known as Kemeny’s constant. Various proofs have been given over time, some more technical than others. We give here a very simple physical justification, which extends without a hitch to continuous-time Markov chains on a finite state space. For Markov chains with denumerably infinite state space, the constant may be infinite and even if it is finite, there is no guarantee that the physical argument will hold. We show that the physical interpretation does go through for the special case of a birth-and-death process with a finite value of Kemeny’s constant.


1986 ◽  
Vol 23 (04) ◽  
pp. 859-866
Author(s):  
A. J. Branford

A simple proof is given of the result that the ‘overflow' from a finite-state birth and death process is a renewal stream characterized by hyperexponential inter-event times. Our structure is utilized to give a converse result that any hyperexponential renewal stream can be so produced as the overflow from a finite-state birth and death process.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 798 ◽  
Author(s):  
Naumov ◽  
Gaidamaka ◽  
Samouylov

In this paper, we study queueing systems with an infinite and finite number of waiting places that can be modeled by a Quasi-Birth-and-Death process. We derive the conditions under which the stationary distribution for a loss system is a truncation of the stationary distribution of the Quasi-Birth-and-Death process and obtain the stationary distributions of both processes. We apply the obtained results to the analysis of a semi-open network in which a customer from an external queue replaces a customer leaving the system at the node from which the latter departed.


1992 ◽  
Vol 29 (4) ◽  
pp. 781-791 ◽  
Author(s):  
Masaaki Kijima

Let N(t) be an exponentially ergodic birth-death process on the state space {0, 1, 2, ···} governed by the parameters {λn, μn}, where µ0 = 0, such that λn = λ and μn = μ for all n ≧ N, N ≧ 1, with λ < μ. In this paper, we develop an algorithm to determine the decay parameter of such a specialized exponentially ergodic birth-death process, based on van Doorn's representation (1987) of eigenvalues of sign-symmetric tridiagonal matrices. The decay parameter is important since it is indicative of the speed of convergence to ergodicity. Some comparability results for the decay parameters are given, followed by the discussion for the decay parameter of a birth-death process governed by the parameters such that limn→∞λn = λ and limn→∞µn = μ. The algorithm is also shown to be a useful tool to determine the quasi-stationary distribution, i.e. the limiting distribution conditioned to stay in {1, 2, ···}, of such specialized birth-death processes.


1986 ◽  
Vol 23 (04) ◽  
pp. 859-866 ◽  
Author(s):  
A. J. Branford

A simple proof is given of the result that the ‘overflow' from a finite-state birth and death process is a renewal stream characterized by hyperexponential inter-event times. Our structure is utilized to give a converse result that any hyperexponential renewal stream can be so produced as the overflow from a finite-state birth and death process.


Sign in / Sign up

Export Citation Format

Share Document