Evaluation of the decay parameter for some specialized birth-death processes

1992 ◽  
Vol 29 (4) ◽  
pp. 781-791 ◽  
Author(s):  
Masaaki Kijima

Let N(t) be an exponentially ergodic birth-death process on the state space {0, 1, 2, ···} governed by the parameters {λn, μn}, where µ0 = 0, such that λn = λ and μn = μ for all n ≧ N, N ≧ 1, with λ < μ. In this paper, we develop an algorithm to determine the decay parameter of such a specialized exponentially ergodic birth-death process, based on van Doorn's representation (1987) of eigenvalues of sign-symmetric tridiagonal matrices. The decay parameter is important since it is indicative of the speed of convergence to ergodicity. Some comparability results for the decay parameters are given, followed by the discussion for the decay parameter of a birth-death process governed by the parameters such that limn→∞λn = λ and limn→∞µn = μ. The algorithm is also shown to be a useful tool to determine the quasi-stationary distribution, i.e. the limiting distribution conditioned to stay in {1, 2, ···}, of such specialized birth-death processes.

1992 ◽  
Vol 29 (04) ◽  
pp. 781-791 ◽  
Author(s):  
Masaaki Kijima

Let N(t) be an exponentially ergodic birth-death process on the state space {0, 1, 2, ···} governed by the parameters {λn, μn }, where µ 0 = 0, such that λn = λ and μn = μ for all n ≧ N, N ≧ 1, with λ &lt; μ. In this paper, we develop an algorithm to determine the decay parameter of such a specialized exponentially ergodic birth-death process, based on van Doorn's representation (1987) of eigenvalues of sign-symmetric tridiagonal matrices. The decay parameter is important since it is indicative of the speed of convergence to ergodicity. Some comparability results for the decay parameters are given, followed by the discussion for the decay parameter of a birth-death process governed by the parameters such that lim n→∞ λn = λ and lim n→∞ µn = μ. The algorithm is also shown to be a useful tool to determine the quasi-stationary distribution, i.e. the limiting distribution conditioned to stay in {1, 2, ···}, of such specialized birth-death processes.


2006 ◽  
Vol 2006 ◽  
pp. 1-15 ◽  
Author(s):  
Pauline Coolen-Schrijner ◽  
Erik A. van Doorn

The Karlin-McGregor representation for the transition probabilities of a birth-death process with an absorbing bottom state involves a sequence of orthogonal polynomials and the corresponding measure. This representation can be generalized to a setting in which a transition to the absorbing state (killing) is possible from any state rather than just one state. The purpose of this paper is to investigate to what extent properties of birth-death processes, in particular with regard to the existence of quasi-stationary distributions, remain valid in the generalized setting. It turns out that the elegant structure of the theory of quasi-stationarity for birth-death processes remains largely intact as long as killing is possible from only finitely many states. In particular, the existence of a quasi-stationary distribution is ensured in this case if absorption is certain and the state probabilities tend to zero exponentially fast.


2012 ◽  
Vol 49 (4) ◽  
pp. 1036-1051 ◽  
Author(s):  
Damian Clancy

For a sequence of finite state space birth–death processes, each having a single absorbing state, we show that, under certain conditions, as the size of the state space tends to infinity, the quasistationary distributions converge to the stationary distribution of a limiting infinite state space birth–death process. This generalizes a result of Keilson and Ramaswamy by allowing birth and death rates to depend upon the size of the state space. We give sufficient conditions under which the convergence result of Keilson and Ramaswamy remains valid. The generalization allows us to apply our convergence result to examples from population biology: a Pearl–Verhulst logistic population growth model and the susceptible-infective-susceptible (SIS) model for infectious spread. The limit distributions obtained suggest new finite-population approximations to the quasistationary distributions of these models, obtained by the method of cumulant closure. The new approximations are found to be both simple in form and accurate.


2012 ◽  
Vol 49 (04) ◽  
pp. 1036-1051
Author(s):  
Damian Clancy

For a sequence of finite state space birth–death processes, each having a single absorbing state, we show that, under certain conditions, as the size of the state space tends to infinity, the quasistationary distributions converge to the stationary distribution of a limiting infinite state space birth–death process. This generalizes a result of Keilson and Ramaswamy by allowing birth and death rates to depend upon the size of the state space. We give sufficient conditions under which the convergence result of Keilson and Ramaswamy remains valid. The generalization allows us to apply our convergence result to examples from population biology: a Pearl–Verhulst logistic population growth model and the susceptible-infective-susceptible (SIS) model for infectious spread. The limit distributions obtained suggest new finite-population approximations to the quasistationary distributions of these models, obtained by the method of cumulant closure. The new approximations are found to be both simple in form and accurate.


1978 ◽  
Vol 10 (03) ◽  
pp. 570-586 ◽  
Author(s):  
James A. Cavender

Letqn(t) be the conditioned probability of finding a birth-and-death process in statenat timet,given that absorption into state 0 has not occurred by then. A family {q1(t),q2(t), · · ·} that is constant in time is a quasi-stationary distribution. If any exist, the quasi-stationary distributions comprise a one-parameter family related to quasi-stationary distributions of finite state-space approximations to the process.


1978 ◽  
Vol 10 (3) ◽  
pp. 570-586 ◽  
Author(s):  
James A. Cavender

Let qn(t) be the conditioned probability of finding a birth-and-death process in state n at time t, given that absorption into state 0 has not occurred by then. A family {q1(t), q2(t), · · ·} that is constant in time is a quasi-stationary distribution. If any exist, the quasi-stationary distributions comprise a one-parameter family related to quasi-stationary distributions of finite state-space approximations to the process.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 251
Author(s):  
Virginia Giorno ◽  
Amelia G. Nobile

We consider a time-inhomogeneous Markov chain with a finite state-space which models a system in which failures and repairs can occur at random time instants. The system starts from any state j (operating, F, R). Due to a failure, a transition from an operating state to F occurs after which a repair is required, so that a transition leads to the state R. Subsequently, there is a restore phase, after which the system restarts from one of the operating states. In particular, we assume that the intensity functions of failures, repairs and restores are proportional and that the birth-death process that models the system is a time-inhomogeneous Prendiville process.


1986 ◽  
Vol 23 (04) ◽  
pp. 1013-1018
Author(s):  
B. G. Quinn ◽  
H. L. MacGillivray

Sufficient conditions are presented for the limiting normality of sequences of discrete random variables possessing unimodal distributions. The conditions are applied to obtain normal approximations directly for the hypergeometric distribution and the stationary distribution of a special birth-death process.


Sign in / Sign up

Export Citation Format

Share Document