scholarly journals On the moments of Markov renewal processes

1969 ◽  
Vol 1 (02) ◽  
pp. 188-210 ◽  
Author(s):  
Jeffrey J. Hunter

Recently Kshirsagar and Gupta [5] obtained expressions for the asymptotic values of the first two moments of a Markov renewal process. The method they employed involved formal inversion of matrices of Laplace-Stieltjes transforms. Their method also required the imposition of a non-singularity condition. In this paper we derive the asymptotic values using known renewal theoretic results. This method of approach utilises the fundamental matrix of the imbedded ergodic Markov chain and the theory of generalised matrix inverses. Although our results differ in form from those obtained by Kshirsagar and Gupta [5] we show that they reduce to their results under the added non-singularity condition. As a by-product of the derivation we find explicit expressions for the moments of the first passage time distributions in the associated semi-Markov process, generalising the results of Kemeny and Snell [4] obtained for Markov chains.

1969 ◽  
Vol 1 (2) ◽  
pp. 188-210 ◽  
Author(s):  
Jeffrey J. Hunter

Recently Kshirsagar and Gupta [5] obtained expressions for the asymptotic values of the first two moments of a Markov renewal process. The method they employed involved formal inversion of matrices of Laplace-Stieltjes transforms. Their method also required the imposition of a non-singularity condition. In this paper we derive the asymptotic values using known renewal theoretic results. This method of approach utilises the fundamental matrix of the imbedded ergodic Markov chain and the theory of generalised matrix inverses. Although our results differ in form from those obtained by Kshirsagar and Gupta [5] we show that they reduce to their results under the added non-singularity condition. As a by-product of the derivation we find explicit expressions for the moments of the first passage time distributions in the associated semi-Markov process, generalising the results of Kemeny and Snell [4] obtained for Markov chains.


1969 ◽  
Vol 18 (2) ◽  
pp. 61-72 ◽  
Author(s):  
A.M. Kshirsagar ◽  
Y. P. Gupta

The following results are obtained in this paper: (1) The probability generating function of the simultaneous distribution of all the Nj( t)'s, where Nj( t) represents the number of times the j­th state ( j = 1, 2, ... , m) is visited in time t, in a Markov Renewal Process ; (2) the covariance between Nj( t) and Nk( t); (3) the probability generating function and moments of Nj( t)'s in a General Markov Renewal Process i.e., a Markov Renewal Process with a random origin; (4) Cumulative processes associated with a Markov Renewal Process along with its first passage time and (5) Equilibrium Markov Renewal Processes.


1992 ◽  
Vol 29 (01) ◽  
pp. 116-128 ◽  
Author(s):  
C. Y. Teresa Lam

In this paper, we study the new better than used in expectation (NBUE) and new worse than used in expectation (NWUE) properties of Markov renewal processes. We show that a Markov renewal process belongs to a more general class of stochastic processes encountered in reliability or maintenance applications. We present sufficient conditions such that the first-passage times of these processes are new better than used in expectation. The results are applied to the study of shock and repair models, random repair time processes, inventory, and queueing models.


1997 ◽  
Vol 10 (4) ◽  
pp. 355-361 ◽  
Author(s):  
Jewgeni H. Dshalalow

The paper studies the behavior of an (l+3)th-dimensional, delayed renewal process with dependent components, the first three (called active) of which are to cross one of their respective thresholds. More specifically, the crossing takes place when at least one of the active components reaches or exceeds its assigned level. The values of the other two active components, as well as the rest of the components (passive), are to be registered. The analysis yields the joint functional of the “crossing level” and other characteristics (some of which can be interpreted as the first passage time) in a closed form, refining earlier results of the author. A brief, informal discussion of various applications to stochastic models is presented.


1991 ◽  
Vol 28 (2) ◽  
pp. 360-373 ◽  
Author(s):  
Yasushi Masuda ◽  
Ushio Sumita

A multivariate reward process defined on a semi-Markov process is studied. Transform results for the distributions of the multivariate reward and related processes are derived through the method of supplementary variables and the Markov renewal equations. These transform results enable the asymptotic behavior to be analyzed. A class of first-passage time distributions of the multivariate reward processes is also investigated.


1991 ◽  
Vol 28 (02) ◽  
pp. 360-373 ◽  
Author(s):  
Yasushi Masuda ◽  
Ushio Sumita

A multivariate reward process defined on a semi-Markov process is studied. Transform results for the distributions of the multivariate reward and related processes are derived through the method of supplementary variables and the Markov renewal equations. These transform results enable the asymptotic behavior to be analyzed. A class of first-passage time distributions of the multivariate reward processes is also investigated.


2001 ◽  
Vol 38 (03) ◽  
pp. 707-721 ◽  
Author(s):  
Jewgeni H. Dshalalow

The paper examines multivariate delayed marked renewal processes, of which one component is formed by a delayed compound Poisson process observed at epochs of some point process. In addition, the values of these observations (and other components) are watched when crossing their respective thresholds and the value of the original Poisson process at any moment of time, past the first passage time, is the objective of this investigation. The results (which are imperative for classes of semiregenerative processes) are given in closed analytical forms and illustrated on various stochastic models.


2001 ◽  
Vol 38 (3) ◽  
pp. 707-721 ◽  
Author(s):  
Jewgeni H. Dshalalow

The paper examines multivariate delayed marked renewal processes, of which one component is formed by a delayed compound Poisson process observed at epochs of some point process. In addition, the values of these observations (and other components) are watched when crossing their respective thresholds and the value of the original Poisson process at any moment of time, past the first passage time, is the objective of this investigation. The results (which are imperative for classes of semiregenerative processes) are given in closed analytical forms and illustrated on various stochastic models.


1992 ◽  
Vol 29 (1) ◽  
pp. 116-128 ◽  
Author(s):  
C. Y. Teresa Lam

In this paper, we study the new better than used in expectation (NBUE) and new worse than used in expectation (NWUE) properties of Markov renewal processes. We show that a Markov renewal process belongs to a more general class of stochastic processes encountered in reliability or maintenance applications. We present sufficient conditions such that the first-passage times of these processes are new better than used in expectation. The results are applied to the study of shock and repair models, random repair time processes, inventory, and queueing models.


1980 ◽  
Vol 45 (3) ◽  
pp. 777-782 ◽  
Author(s):  
Milan Šolc

The establishment of chemical equilibrium in a system with a reversible first order reaction is characterized in terms of the distribution of first passage times for the state of exact chemical equilibrium. The mean first passage time of this state is a linear function of the logarithm of the total number of particles in the system. The equilibrium fluctuations of composition in the system are characterized by the distribution of the recurrence times for the state of exact chemical equilibrium. The mean recurrence time is inversely proportional to the square root of the total number of particles in the system.


Sign in / Sign up

Export Citation Format

Share Document