scholarly journals Nilpotent measures on compact semigroups

1975 ◽  
Vol 12 (1) ◽  
pp. 149-153 ◽  
Author(s):  
H.L. Chow

Let S be a compact semigroup and P(S) the set of probability measures on S. Suppose P(S) has zero θ and define a measure μ ε P(S) nilpotent if μn → θ. It is shown that any measure with support containing that of θ is nilpotent, and the set of nilpotent measures is convex and dense in P(S). A measure μ is called mean-nilpotent if (μ + μ2 + … + μn)/n → θ, and can be characterized in terms of its support.

1987 ◽  
Vol 30 (3) ◽  
pp. 273-281 ◽  
Author(s):  
James C. S. Wong

AbstractThis is a sequel to the author's paper "On the semigroup of probability measures of a locally compact semigroup." We continue to investigate the relationship between amenability of spaces of functions and functionals associated with a locally compact semigroups S and its convolution semigroup MO(S) of probability measures and fixed point properties of actions of S and MO(S) on compact convex sets.


1970 ◽  
Vol 17 (1) ◽  
pp. 95-103 ◽  
Author(s):  
J. Duncan

Let S be a compact semigroup (with jointly continuous multiplication) and let P(S) denote the probability measures on S, i.e. the positive regular Borel measures on S with total mass one. Then P(S) is a compact semigroup with convolution multiplication and the weak* topology. Let II(P(S)) denote the set of primitive (or minimal) idempotents in P(S). Collins (2) and Pym (5) respectively have given complete descriptions of II(P(S)) when S is a group and when K(S), the kernel of S, is not a group. Choy (1) has given some characterizations of II(P(S)) for the general case. In this paper we present some detailed and intrinsic characterizations of II((P(S)) for various classes of compact semigroups that are not covered by the results of Collins and Pym.


1970 ◽  
Vol 11 (4) ◽  
pp. 417-420
Author(s):  
Tze-Chien Sun ◽  
N. A. Tserpes

In [6] we announced the following Conjecture: Let S be a locally compact semigroup and let μ be an idempotent regular probability measure on S with support F. Then(a) F is a closed completely simple subsemigroup.(b) F is isomorphic both algebraically and topologically to a paragroup ([2], p.46) X × G × Y where X and Y are locally compact left-zero and right-zero semi-groups respectively and G is a compact group. In X × G × Y the topology is the product topology and the multiplication of any two elements is defined by , x where [y, x′] is continuous mapping from Y × X → G.(c) The induced μ on X × G × Y can be decomposed as a product measure μX × μG× μY where μX and μY are two regular probability measures on X and Y respectively and μG is the normed Haar measure on G.


2003 ◽  
Vol 4 (1) ◽  
pp. 133
Author(s):  
Ralph D. Kopperman ◽  
Desmond Robbie

<p>Skew compact spaces are the best behaving generalization of compact Hausdorff spaces to non-Hausdorff spaces. They are those (X ; τ ) such that there is another topology τ* on X for which τ V τ* is compact and (X; τ ; τ*) is pairwise Hausdorff; under these conditions, τ uniquely determines τ *, and (X; τ*) is also skew compact. Much of the theory of compact T<sub>2</sub> semigroups extends to this wider class. We show:</p> <p>A continuous skew compact semigroup is a semigroup with skew compact topology τ, such that the semigroup operation is continuous τ<sup>2</sup>→ τ. Each of these contains a unique minimal ideal which is an upper set with respect to the specialization order.</p> <p>A skew compact semigroup which is a continuous semigroup with respect to both topologies is called a de Groot semigroup. Given one of these, we show:</p> <p>It is a compact Hausdorff group if either the operation is cancellative, or there is a unique idempotent and S<sup>2</sup> = S.</p> <p>Its topology arises from its subinvariant quasimetrics.</p> <p>Each *-closed ideal ≠ S is contained in a proper open ideal.</p>


1978 ◽  
Vol 26 (1) ◽  
pp. 126-128
Author(s):  
Kermit Sigmon

AbstractThe compact semigroups in which each topologically simple subsemigroup is simple are characterized as those in which no subgroup sontains an element of infinite order. It is also shown that a locally compact toplogically simple subsemigroup of a compact semigroup must be simple. The note closes with an open problem.Subject classification (Amer. Math. Soc. (MOS) 1970): primary 22 A 15; secondary 20 M 10.


1964 ◽  
Vol 4 (3) ◽  
pp. 273-286 ◽  
Author(s):  
J. H. Michael

An integral on a locally compact Hausdorff semigroup ς is a non-trivial, positive, linear functional μ on the space of continuous real-valued functions on ς with compact supports. If ς has the property: (A) for each pair of compact sets C, D of S, the set is compact; then, whenever and a ∈ S, the function fa defined by is also in . An integral μ on a locally compact semigroup S with the property (A) is said to be right invariant if for all j ∈ and all a ∈ S.


1970 ◽  
Vol 22 (6) ◽  
pp. 1168-1175 ◽  
Author(s):  
Francis T. Christoph

In the study of compact semigroups the constructive method rather than the representational method is usually the better plan of attack. As it was pointed out by Hofmann and Mostert in the introduction to their book [10] this method is more productive than searching for a representation theory. Hofmann and Mostert described a constructive method called the Hormos and showed that any irreducible compact semigroup is obtained by the Hormos construction. Many of the important examples of irreducible semigroups which motivated their work were obtained by Hunter [11; 12; 13; 14].In this paper, we apply the constructive method of ideal extensions [5] in algebraic semigroups to topological semigroups which are not necessarily compact. Many of Hunter's examples and examples of the Hormos technique can also be obtained by our method of topological ideal extensions. The topological ideal extension method, however, is, in general, a different type of construction technique.


Sign in / Sign up

Export Citation Format

Share Document