The Hutchinson-Barnsley theory for infinite iterated function systems

2005 ◽  
Vol 72 (3) ◽  
pp. 441-454 ◽  
Author(s):  
Gertruda Gwóźdź-Lukawska ◽  
Jacek Jachymski

We show that some results of the Hutchinson-Barnsley theory for finite iterated function systems can be carried over to the infinite case. Namely, if {Fi:i∈ ℕ} is a family of Matkowski's contractions on a complete metric space (X, d) such that (Fix0)i∈Nis bounded for somex0∈X, then there exists a non-empty bounded and separable setKwhich is invariant with respect to this family, that is,. Moreover, given σ ∈ ℕℕandx∈X, the limit exists and does not depend onx. We also study separately the case in which (X, d) is Menger convex or compact. Finally, we answer a question posed by Máté concerning a finite iterated function system {F1,…,FN} with the property that each ofFihas a contractive fixed point.

2018 ◽  
Vol 7 (3.31) ◽  
pp. 126
Author(s):  
Minirani S ◽  
. .

A finite collection of mappings which are contractions on a complete metric space constitutes an iterated function system. In this paper we study the generalized iterated function system which contain generalized contractions of integral type from the product space . We prove the existence and uniqueness of the fixed point of such an iterated function system which is also known as its attractor. 


2013 ◽  
Vol 59 (2) ◽  
pp. 281-298
Author(s):  
Dan Dumitru

Abstract We consider a complete ε-chainable metric space (X, d) and an infinite iterated function system (IIFS) formed by an infinite family of (ε, φ)-functions on X. The aim of this paper is to prove the existence and uniqueness of the attractors of such infinite iterated systems (IIFS) and to give some sufficient conditions for these attractors to be connected. Similar results are obtained in the case when the IIFS is formed by an infinite family of uniformly ε-locally strong Meir-Keeler functions.


2017 ◽  
Vol 25 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Flavian Georgescu

Abstract In this paper we introduce the concept of iterated function system consisting of generalized convex contractions. More precisely, given n ∈ ℕ*, an iterated function system consisting of generalized convex contractions on a complete metric space (X; d) is given by a finite family of continuous functions (fi)i ∈I , fi : X → X, having the property that for every ω ∈ λn(I) there exists a family of positive numbers (aω;υ)υ∈Vn(I) such that: x; y ∈ X. Here λn(I) represents the family of words with n letters from I, Vn(I) designates the family of words having at most n - 1 letters from I, while, if ω1 = ω1ω2 ... ωp, by fω we mean fω1 ⃘fω2 ⃘... ⃘ fωp. Denoting such a system by S = ((X; d); n; (fi)i∈I), one can consider the function FS : K(X) → K(X) described by , for all B ∈ K(X), where K(X) means the set of non-empty compact subsets of X. Our main result states that FS is a Picard operator for every iterated function system consisting of generalized convex contractions S.


2015 ◽  
Vol 2015 ◽  
pp. 1-16
Author(s):  
T. Dinevari ◽  
M. Frigon

We apply a fixed point result for multivalued contractions on complete metric spaces endowed with a graph to graph-directed iterated function systems. More precisely, we construct a suitable metric space endowed with a graphGand a suitableG-contraction such that its fixed points permit us to obtain more information on the attractor of a graph-directed iterated function system.


2021 ◽  
Vol 37 (2) ◽  
pp. 217-226
Author(s):  
RADU MICULESCU ◽  
ALEXANDRU MIHAIL ◽  
CRISTINA-MARIA PĂCURAR

"In this paper we provide another characterization of hyperbolic diameter diminishing to zero iterated function systems that were studied in [R. Miculescu, A. Mihail, Diameter diminishing to zero IFSs, arXiv:2101.12705]. The primary tool that we use is an operator H_{\mathcal{S}}, associated to the iterated function system \mathcal{S}, which is inspired by the similar one utilized in Mihail (Fixed Point Theory Appl., 2015:75, 2015). Some fixed point results are also obtained as by products of our main result."


2013 ◽  
Vol 88 (2) ◽  
pp. 267-279 ◽  
Author(s):  
MICHAEL F. BARNSLEY ◽  
ANDREW VINCE

AbstractWe investigate the topological and metric properties of attractors of an iterated function system (IFS) whose functions may not be contractive. We focus, in particular, on invertible IFSs of finitely many maps on a compact metric space. We rely on ideas of Kieninger [Iterated Function Systems on Compact Hausdorff Spaces (Shaker, Aachen, 2002)] and McGehee and Wiandt [‘Conley decomposition for closed relations’, Differ. Equ. Appl. 12 (2006), 1–47] restricted to what is, in many ways, a simpler setting, but focused on a special type of attractor, namely point-fibred invariant sets. This allows us to give short proofs of some of the key ideas.


2019 ◽  
Vol 38 (3) ◽  
pp. 97-109 ◽  
Author(s):  
Hadi Parham ◽  
F. H. Ghane ◽  
A. Ehsani

In this paper, we study the chaotic dynamics of iterated function systems (IFSs) generated by a finite family of maps on a compact metric space. In particular, we restrict ourselves to topological transitivity, fiberwise transitivity, minimality and total minimality of IFSs. First, we pay special attention to the relation between topological transitivity and fiberwise transitivity. Then we generalize the concept of periodic decompositions of continuous maps, introduced by John Banks [1], to iterated function systems. We will focus on the existence of periodic decompositions for topologically transitive IFSs. Finally, we show that each minimal abelian iterated function system generated by a finite family of homeomorphisms on a connected compact metric space X is totally minimal.


2013 ◽  
Vol 35 (3) ◽  
pp. 854-882 ◽  
Author(s):  
JONATHAN M. FRASER

AbstractWe define a random iterated function system (RIFS) to be a finite set of (deterministic) iterated function systems (IFSs) acting on the same metric space. For a given RIFS, there exists a continuum of random attractors corresponding to each sequence of deterministic IFSs. Much work has been done on computing the ‘almost sure’ dimensions of these random attractors. Here we compute the typical dimensions (in the sense of Baire) and observe that our results are in stark contrast to those obtained using the probabilistic approach. Furthermore, we examine the typical Hausdorff and packing measures of the random attractors and give examples to illustrate some of the strange phenomena that can occur. The only restriction we impose on the maps is that they are bi-Lipschitz and we obtain our dimension results without assuming any separation conditions.


2020 ◽  
Vol 12 (4) ◽  
pp. 60-68
Author(s):  
Natalia Mazurenko ◽  
Mykhailo Zarichnyi

It is proved that for any iterated function system of contractions on a complete metric space there exists an invariant compact convex sets of probability measures of compact support on this space. A similar result is proved for the inhomogeneous  compact convex sets of probability measures of compact support.


2020 ◽  
Vol 21 (1) ◽  
pp. 57
Author(s):  
Medha Garg ◽  
Sumit Chandok

<p>In this paper, we define weak θ<sub>m</sub>− contraction mappings and give a new class of Picard operators for such class of mappings on a complete metric space. Also, we obtain some new results on the existence and uniqueness of attractor for a weak θ<sub>m</sub>− iterated multifunction system. Moreover, we introduce (α, β, θ<sub>m</sub>)− contractions using cyclic (α, β)− admissible mappings and obtain some results for such class of mappings without the continuity of the operator. We also provide an illustrative example to support the concepts and results proved herein.</p>


Sign in / Sign up

Export Citation Format

Share Document