scholarly journals Digestion of feed amino acids in the rumen and small intestine of dairy cows measured with nylon-bag techniques

1997 ◽  
Vol 77 (1) ◽  
pp. 83-97 ◽  
Author(s):  
W. M. van Straalen ◽  
J. J. Odinga ◽  
W. Mostert

The disappearance of total N, non-protein-N and amino acid-N after washing, rumen incubation and intestinal passage of sugarbeet pulp, maize-gluten feed, maize feed meal, palm kernel meal, soyabean hulls, soyabean meal, grass silage, maize silage and concentrate was measured in four dairy cows using nylon-bag techniques. Disappearance of amino acid-N after washing varied between feedstuff's from 14 to 69% of feed amino acid-N, and was lower than disappearance of non-protein-N. For sugarbeet pulp, grass silage and maize silage, washing had a considerable effect on the amino acid profile. Disappearance of amino acid-N after rumen incubation was also lower than non-protein-N and varied between feedstuffs from 25 to 73% of feed amino acid-N. Rumen incubation had only a small effect on the amino acid profile of the residue after washing. Disappearance of amino acid-N in the intestine varied between feedstuffs from 70 to 99% of rumen undegraded amino acid-N, and was higher than the disappearance of non-protein-N. Intestinal incubation showed a considerable effect on the amino acid profile for all feedstuffs. It was concluded that protein that was assumed to escape rumen degradation and was absorbable in the intestine was higher in amino acids and methionine, and lower in non-amino acid-N and glutamic acid and proline compared with protein in the feedstuff.

1990 ◽  
Vol 63 (3) ◽  
pp. 489-502 ◽  
Author(s):  
D. E. Beever ◽  
M. Gill ◽  
J. M. Dawson ◽  
P. J. Buttery

The effect of two levels of fishmeal substitution (50 (FM1) and 150 (FM2) g/kg) of a grass silage control diet (C) on the rumen digestion of organic matter and nitrogen, and the small intestinal disappearance of amino acids was examined in young growing cattle each equipped with simple PVC cannulas in the dorsal sac of the reticulo-rumen, the proximal duodenum and the terminal ileum. The silage was a primary growth of perennial ryegrass (Lnlium pevenne) (+formic acid) with a total N content of 22 g/kg dry matter (DM) (diet C). Fishmeal substitution increased this to 26 (diet FM1) and 34 (diet FM2) g/kg DM. On diets C and FM1, approximately 0.71 of digestible organic matter intake was apparently digested in the rumen, but this was significantly (P < 0.05) reduced on diet FM2 (0.60). Whilst duodenal flows of non-ammonia N and total amino acids were significantly (P < 001) increased at the highest level of fishmeal inclusion only, the synthesis of microbial N was significantly (P < 0.001) reduced by fishmeal inclusion, and feed N degradability declined progressively in response to increased fishmeal. Both levels of fishmeal addition caused a significant (P< 0.05) reduction in the fractional outflow rate of water from the rumen, and on the highest level of fishmeal significant (P< 0.05) increases in rumen ammonia concentration and rumen propionate molar proportions were observed. The net effect of the highest level of fishmeal substitution was to increase amino acid absorption from the small intestine by 0.47 compared with the control diet (P< 0.05), but due to an elevated ileal flow of amino acid no such effect was detected at the lowest level of fishmeal substitution. Composition of the absorbed amino acid fraction was relatively unaffected by the treatments imposed, despite large changes in the composition of the duodenal protein. The apparent non-linearity of response to fishmeal substitution is discussed and the amino acid supply findings are compared with the protein retention findings obtained in an earlier study by Gill et al. (1987). By two methods of calculation it was estimated that the amino acid N fraction disappearing from the small intestine was utilized with an efficiency of between 0.51 and 0.53 and no apparent effects due to diet or level of amino acid supply were detected.


1975 ◽  
Vol 23 (2) ◽  
pp. 89-103
Author(s):  
S. Tamminga

2. Two dairy cows with duodenal reentrant and rumen cannulae were given diets containing artificially dried and pelleted grass (GP), grass silage treated with formic acid (GSF), grass silage treated with a mixture of formic acid and formaldehyde (GSFF) or grass silage without additive (GS). DM intake was 14.8 to 16.0 kg/day and about 30% of the N in the diets was from grass pellets or silages. Between 45 and 57% of the apparently digested organic matter and between 26 and 41% of the apparently digested energy disappeared before the intestines. The higher values were found with GSF and GS.Total amino acid N reaching the duodenum was between 104 and 134% of intake, highest with GP and GSFF. The amounts of individual amino acids reaching the small intestine were from 75 to 270% of the amounts ingested. High values (>150%) were found for glycine, lysine, methionine and tyrosine; low values (


1990 ◽  
Vol 38 (4) ◽  
pp. 719-724
Author(s):  
G. Hof ◽  
W.J.A. Kouwenberg ◽  
S. Tamminga

Soyabean meal and wilted grass silage were suspended in nylon bags in the rumen for 0, 3, 6 and 12 h and 0, 6, 24 and 48 h, respectively. Samples were then washed using the standard procedure, or standard washing, followed by soaking for 16 h in neutral detergent at 70 or 25 degrees C, followed by standard washing. The amino acid profile of the samples was determined by amino acid content in the original feed. Amino acids disappeared at a faster rate than non-amino acid N. Microbial contamination was only seen in the grass silage and its residues after incubation. None of the washing procedures effectively removed microbial contamination. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1996 ◽  
Vol 1996 ◽  
pp. 82-82
Author(s):  
J.R. Newbold ◽  
H.W. Morris ◽  
N.G. Haggis

Compared with most grass silages, maize silage has a low ratio of rumen degradable protein: fermentable energy. Unlike grass silage, maize silage contains rumen fermentable starch. These differences imply that a different regimen of supplemental nutrients is required to optimise cow performance on rations containing maize silage compared with rations based on grass silage. The objective of this study was to define responses of dairy cows fed rations based on maize silage to supplements of rumen fermentable starch (RFS) and effective rumen degradable protein (ERDP).


2020 ◽  
Vol 22 (9) ◽  
pp. 657-662 ◽  
Author(s):  
Mustafa Celik ◽  
Alper Şen ◽  
İsmail Koyuncu ◽  
Ataman Gönel

Aim and Objective:: To determine the mechanisms present in the etiopathogenesis of nasal polyposis. It is not clear whether amino acids contribute in a causal way to the development of the disease. Therefore, the aim of this study was to determine the plasma-free amino acid profile in patients with nasal polyposis and to compare the results with a healthy control group. Materials and Methods:: This was a prospective controlled study that took place in the Otolaryngology Department at the Harran University Faculty of Medicine between April 2017 and April 2018. Plasmafree amino acid profile levels were studied in serum samples taken from a patient group and a healthy control group. Patients who were diagnosed with bilateral diffuse nasal polyposis and were scheduled for surgical interventions were included in this study. Individuals whose age, gender, and body mass index values were compatible with that of the patient group and who did not have any health problems were included in the control group. All the participants whose levels of plasma-free amino acid were thought to be affected by one or more of the following factors were excluded from the study: smoking and alcohol use, allergic rhinitis presence, the presence of acute or chronic sinusitis, a history of endoscopic sinus surgery, unilateral nasal masses, a history of chronic drug use, systemic or topical steroid use in the last three months for any reason, and liver, kidney, hematological, cardiovascular, metabolic, neurological, or psychiatric disorders or malignancies. Results: In patients with nasal polyposis, 3-methyl histidine (3-MHIS: nasal polyposis group (ng) = 3.22 (1.92 – 6.07); control group (cg) = 1.21 (0.77 – 1.68); p = 0.001); arginine (arg: ng = 98.95 (70.81 – 117.75); cg = 75.10 (54.49 – 79.88); p = 0.005); asparagine (asn: ng = 79.84 (57.50 – 101.44); cg = 60.66 (46.39 – 74.62); p = 0.021); citrulline (cit: ng = 51.83 (43.81 – 59.78); cg = 38.33 (27.81 – 53.73); p = 0.038); cystine (cys: ng = 4.29 (2.43 – 6.66); cg = 2.41 (1.51 – 4.16); p = 0.019); glutamic acid (glu: ng = 234.86 (128.75 – 286.66); cg = 152.37 (122.51 – 188.34); p = 0.045); histidine (his: ng = 94.19 (79.34 – 113.99); cg = 74.80 (62.76 – 98.91); p = 0.018); lysine (lys: ng = 297.22 (206.55 – 371.25); cg = 179.50 (151.58 – 238.02); p = 0.001); ornithine (ng = 160.62 (128.36 – 189.32); cg = 115.91 (97.03 – 159.91); p = 0.019); serine (ser: ng = 195.15 (151.58 – 253.07); cg = 83.07 (67.44 – 92.44); p = 0.001); taurine (tau: ng = 74.69 (47.00 – 112.13); cg = 53.14 (33.57 – 67.31); p = 0.006); tryptophan (trp: ng = 52.31 (33.81 – 80.11); cg = 34.44 (25.94 – 43.07); p = 0.005), homocitrulline (ng = 1.75 (1.27 – 2.59); cg = 0.00 (0.00 – 0.53); p = 0.001); norvaline (ng = 6.90 (5.61 – 9.18); cg = 4.93 (3.74 – 7.13); p = 0.021); argininosuccinic acid (ng = 14.33 (10.06 – 25.65); cg = 12.22 (5.77 – 16.87) p = 0.046); and plasma concentrations were significantly higher than in the healthy control group (p <0.05). However, the gamma-aminobutyric acid (gaba: ng = 0.16 (0.10 – 0.24); cg = 0.21 (0.19 – 0.29); p = 0.010) plasma concentration was significantly lower in the nasal polyposis group than in the healthy control group. Conclusion: In this study, plasma levels of 15 free amino acids were significantly higher in the nasal polyposis group than in the healthy control group. A plasma level of 1 free amino acid was found to be significantly lower in the nasal polyposis group compared to the healthy control group. Therefore, it is important to determine the possibility of using the information obtained to prevent the recurrence of the condition and to develop effective treatment strategies. This study may be a milestone for studies of this subject. However, this study needs to be confirmed by further studies conducted in a larger series.


Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 203
Author(s):  
Denisa Avdouli ◽  
Johannes F. J. Max ◽  
Nikolaos Katsoulas ◽  
Efi Levizou

In a cascade hydroponic system, the used nutrient solution drained from a primary crop is directed to a secondary crop, enhancing resource-use efficiency while minimizing waste. Nevertheless, the inevitably increased EC of the drainage solution requires salinity-tolerant crops. The present study explored the salinity-tolerance thresholds of basil to evaluate its potential use as a secondary crop in a cascade system. Two distinct but complemented approaches were used; the first experiment examined basil response to increased levels of salinity (5, 10 and 15 dS m−1, compared with 2 dS m−1 of control) to identify the limits, and the second experiment employed a cascade system with cucumber as a primary crop to monitor basil responses to the drainage solution of 3.2 dS m−1. Growth, ascorbate content, nutrient concentration, and total amino acid concentration and profile were determined in both experiments. Various aspects of basil growth and biochemical performance collectively indicated the 5 dS m−1 salinity level as the upper limit/threshold of tolerance to stress. Higher salinity levels considerably suppressed fresh weight production, though the total concentration of amino acids showed a sevenfold increase under 15 dS m−1 and 4.5-fold under 5 and 10 dS m−1 compared to the control. The performance of basil in the cascade system was subject to a compromise between a reduction of fresh produce and an increase of total amino acids and ascorbate content. This outcome indicated that basil performed well under the conditions and the system employed in the present study, and might be a good candidate for use as a secondary crop in cascade-hydroponics systems.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jing Fan ◽  
Jing Hong ◽  
Jun-Duo Hu ◽  
Jin-Lian Chen

Aim. Amino acid metabolism in cancer patients differs from that in healthy people. In the study, we performed urine-free amino acid profile of gastric cancer at different stages and health subjects to explore potential biomarkers for diagnosing or screening gastric cancer.Methods. Forty three urine samples were collected from inpatients and healthy adults who were divided into 4 groups. Healthy adults were in group A (n=15), early gastric cancer inpatients in group B (n=7), and advanced gastric cancer inpatients in group C (n=16); in addition, two healthy adults and three advanced gastric cancer inpatients were in group D (n=5) to test models. We performed urine amino acids profile of each group by applying ion chromatography (IC) technique and analyzed urine amino acids according to chromatogram of amino acids standard solution. The data we obtained were processed with statistical analysis. A diagnostic model was constructed to discriminate gastric cancer from healthy individuals and another diagnostic model for clinical staging by principal component analysis. Differentiation performance was validated by the area under the curve (AUC) of receiver-operating characteristic (ROC) curves.Results. The urine-free amino acid profile of gastric cancer patients changed to a certain degree compared with that of healthy adults. Compared with healthy adult group, the levels of valine, isoleucine, and leucine increased (P<0.05), but the levels of histidine and methionine decreased (P<0.05), and aspartate decreased significantly (P<0.01). The urine amino acid profile was also different between early and advanced gastric cancer groups. Compared with early gastric cancer, the levels of isoleucine and valine decreased in advanced gastric cancer (P<0.05). A diagnosis model constructed for gastric cancer with AUC value of 0.936 tested by group D showed that 4 samples could coincide with it. Another diagnosis model for clinical staging with an AUC value of 0.902 tested by 3 advanced gastric cancer inpatients of group D showed that all could coincide with the model.Conclusions. The noticeable differences of urine-free amino acid profiles between gastric cancer patients and healthy adults indicate that such amino acids as valine, isoleucine, leucine, methionine, histidine and aspartate are important metabolites in cell multiplication and gene expression during tumor growth and metastatic process. The study suggests that urine-free amino acid profiling is of potential value for screening or diagnosing gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document