scholarly journals On linear independence for integer translates of a finite number of functions

1993 ◽  
Vol 36 (1) ◽  
pp. 69-85 ◽  
Author(s):  
Rong-Qing Jia ◽  
Charles A. Micchelli

We investigate linear independence of integer translates of a finite number of compactly supported functions in two cases. In the first case there are no restrictions on the coefficients that may occur in dependence relations. In the second case the coefficient sequences are restricted to be in some lp space (1 ≦ p ≦ ∞) and we are interested in bounding their lp-norms in terms of the Lp-norm of the linear combination of integer translates of the basis functions which uses these coefficients. In both cases we give necessary and sufficient conditions for linear independence of integer translates of the basis functions. Our characterization is based on a study of certain systems of linear partial difference and differential equations, which are of independent interest.

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Esra Betul Koc Ozturk

With the help of the Frenet frame of a given pseudo null curve, a family of parametric surfaces is expressed as a linear combination of this frame. The necessary and sufficient conditions are examined for that curve to be an isoparametric and asymptotic on the parametric surface. It is shown that there is not any cylindrical and developable ruled surface as a parametric surface. Also, some interesting examples are illustrated about these surfaces.


2008 ◽  
Vol 21 (3) ◽  
pp. 309-325 ◽  
Author(s):  
Yury Farkov

This paper gives a review of multiresolution analysis and compactly sup- ported orthogonal wavelets on Vilenkin groups. The Strang-Fix condition, the partition of unity property, the linear independence, the stability, and the orthonormality of 'integer shifts' of the corresponding refinable functions are considered. Necessary and sufficient conditions are given for refinable functions to generate a multiresolution analysis in the L2-spaces on Vilenkin groups. Several examples are provided to illustrate these results. .


2020 ◽  
Vol 12 (1) ◽  
pp. 165-172
Author(s):  
A. Chaikovs'kyi ◽  
O. Lagoda

We study the problem of existence of a unique bounded solution of a difference equation with variable operator coefficient in a Banach space. There is well known theory of such equations with constant coefficient. In that case the problem is solved in terms of spectrum of the operator coefficient. For the case of variable operator coefficient correspondent conditions are known too. But it is too hard to check the conditions for particular equations. So, it is very important to give an answer for the problem for those particular cases of variable coefficient, when correspondent conditions are easy to check. One of such cases is the case of piecewise constant operator coefficient. There are well known sufficient conditions of existence and uniqueness of bounded solution for the case of one jump. In this work, we generalize these results for the case of finite number of jumps of operator coefficient. Moreover, under additional assumption we obtained necessary and sufficient conditions of existence and uniqueness of bounded solution.


1991 ◽  
Vol 43 (1) ◽  
pp. 19-33 ◽  
Author(s):  
Charles K. Chui ◽  
Amos Ron

AbstractThe problem of linear independence of the integer translates of μ * B, where μ is a compactly supported distribution and B is an exponential box spline, is considered in this paper. The main result relates the linear independence issue with the distribution of the zeros of the Fourier-Laplace transform, of μ on certain linear manifolds associated with B. The proof of our result makes an essential use of the necessary and sufficient condition derived in [12]. Several applications to specific situations are discussed. Particularly, it is shown that if the support of μ is small enough then linear independence is guaranteed provided that does not vanish at a certain finite set of critical points associated with B. Also, the results here provide a new proof of the linear independence condition for the translates of B itself.


1966 ◽  
Vol 62 (2) ◽  
pp. 149-164 ◽  
Author(s):  
D. B. Mcalister

Conrad ((2)), has shown that any lattice group which obeys (C.F.) each strictly positive element exceeds at most a finite number of pairwise orthogonal elements may be constructed, from a family of simply ordered groups, by carrying out, alternately, the operations of forming finite direct sums and lexico extensions, at most a countable number of times. The main result of this paper, Theorem 3.1, gives necessary and sufficient conditions for a multilattice group, which obeys (ℋ*), to be isomorphic to a multilattice group which is constructed from a family of almost ordered groups, by carrying out, alternately, the operations of forming arbitrary direct sums and lexico extensions, any number of times; we call such a group a lexico sum of the almost ordered groups.


2014 ◽  
Vol 25 (10) ◽  
pp. 1450093
Author(s):  
T. Ito ◽  
B. Scárdua ◽  
Y. Yamagishi

We study the classification of the pairs (N, X) where N is a Stein surface and X is a ℂ-complete holomorphic vector field with isolated singularities on N. We describe the role of transverse sections in the classification of X and give necessary and sufficient conditions on X in order to have N biholomorphic to ℂ2. As a sample of our results, we prove that N is biholomorphic to ℂ2 if H2(N, ℤ) = 0, X has a finite number of singularities and exhibits a singularity with three separatrices or, equivalently, a singularity with first jet of the form [Formula: see text] where λ1/λ2 ∈ ℚ+. We also study flows with many periodic orbits (i.e. orbits diffeomorphic to ℂ*), in a sense we will make clear, proving they admit a meromorphic first integral or they exhibit some special periodic orbit, whose holonomy map is a non-resonant nonlinearizable diffeomorphism map.


Sign in / Sign up

Export Citation Format

Share Document