scholarly journals Finitarily linear wreath products

2000 ◽  
Vol 43 (1) ◽  
pp. 27-41
Author(s):  
B. A. F. Wehrfritz

AbstractWe consider faithful finitary linear representations of (generalized) wreath products A wrΩH of groups A by H over (potentially) infinite-dimensional vector spaces, having previously considered completely reducible such representations in an earlier paper. The simpler the structure of A the more complex, it seems, these representations can become. If A has no non-trivial abelian normal subgroups, the conditions we present are both necessary and sufficient. They imply, for example, that for such an A, if there exists such a representation of the standard wreath product A wr H of infinite dimension, then there already exists one of finite dimension.

2020 ◽  
Vol 63 (4) ◽  
pp. 956-970 ◽  
Author(s):  
Haibo Chen ◽  
JianZhi Han

AbstractThe Virasoro algebra $\mathcal {L}$ is an infinite-dimensional Lie algebra with basis {Lm, C| m ∈ ℤ} and relations [Lm, Ln] = (n − m)Lm+n + δm+n,0((m3 − m)/12)C, [Lm, C] = 0 for m, n ∈ ℤ. Let $\mathfrak a$ be the subalgebra of $\mathcal {L}$ spanned by Li for i ≥ −1. For any triple (μ, λ, α) of complex numbers with μ ≠ 0, λ ≠ 0 and any non-trivial $\mathfrak a$-module V satisfying the condition: for any v ∈ V there exists a non-negative integer m such that Liv = 0 for all i ≥ m, non-weight $\mathcal {L}$-modules on the linear tensor product of V and ℂ[∂], denoted by $\mathcal {M}(V,\mu ,\Omega (\lambda ,\alpha ))\ (\Omega (\lambda ,\alpha )=\mathbb {C}[\partial ]$ as vector spaces), are constructed in this paper. We prove that $\mathcal {M}(V,\mu ,\Omega (\lambda ,\alpha ))$ is simple if and only if μ ≠ 1, λ ≠ 0, α ≠ 0. We also give necessary and sufficient conditions for two such simple $\mathcal {L}$-modules being isomorphic. Finally, these simple $\mathcal {L}$-modules $\mathcal {M}(V,\mu ,\Omega (\lambda ,\alpha ))$ are proved to be new for V not being the highest weight $\mathfrak a$-module whose highest weight is non-zero.


1990 ◽  
Vol 32 (1) ◽  
pp. 25-33 ◽  
Author(s):  
A. Dean ◽  
F. Zorzitto

By a representation of the extended Dynkin diagram we shall mean a list of 5 vector spaces P, E1, E2, E3, E4 over an algebraically closed field K, and 4 linear maps a1, a2, a3, a4 as shown.The spaces need not be of finite dimension.In their solution of the 4-subspace problem [6], Gelfand and Ponomarev have classified such representations when the spaces are finite dimensional. A representation like (1) can also be viewed as a module over the K-algebra R4 consisting of all 5 × 5 matrices having zeros off the first row and off the main diagonal.


1971 ◽  
Vol 5 (2) ◽  
pp. 157-173 ◽  
Author(s):  
Alan Lambert

Let H be a complex Hilbert space and let {A1, A2, …} be a uniformly bounded sequence of invertible operators on H. The operator S on l2(H) = H ⊕ H ⊕ … given by S〈x0, x1, …〉 = 〈0, A1x0, A2x1, …〉 is called the invertibly veighted shift on l2(H) with weight sequence {An }. A matricial description of the commutant of S is established and it is shown that S is unitarily equivalent to an invertibly weighted shift with positive weights. After establishing criteria for the reducibility of S the following result is proved: Let {B1, B2, …} be any sequence of operators on an infinite dimensional Hilbert space K. Then there is an operator T on K such that the lattice of reducing subspaces of T is isomorphic to the corresponding lattice of the W* algebra generated by {B1, B2, …}. Necessary and sufficient conditions are given for S to be completely reducible to scalar weighted shifts.


Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5111-5116
Author(s):  
Davood Ayaseha

We study the locally convex cones which have finite dimension. We introduce the Euclidean convex quasiuniform structure on a finite dimensional cone. In special case of finite dimensional locally convex topological vector spaces, the symmetric topology induced by the Euclidean convex quasiuniform structure reduces to the known concept of Euclidean topology. We prove that the dual of a finite dimensional cone endowed with the Euclidean convex quasiuniform structure is identical with it?s algebraic dual.


2021 ◽  
Vol 8 (1) ◽  
pp. 46-74
Author(s):  
Christian Pötzsche ◽  
Evamaria Russ

Abstract The purpose of this informal paper is three-fold: First, filling a gap in the literature, we provide a (necessary and sufficient) principle of linearized stability for nonautonomous difference equations in Banach spaces based on the dichotomy spectrum. Second, complementing the above, we survey and exemplify an ambient nonautonomous and infinite-dimensional center manifold reduction, that is Pliss’s reduction principle suitable for critical stability situations. Third, these results are applied to integrodifference equations of Hammerstein- and Urysohn-type both in C- and Lp -spaces. Specific features of the nonautonomous case are underlined. Yet, for the simpler situation of periodic time-dependence even explicit computations are feasible.


2013 ◽  
Vol 23 (04) ◽  
pp. 915-941 ◽  
Author(s):  
DOMINIQUE PERRIN

We study the family of rational sets of words, called completely reducible and which are such that the syntactic representation of their characteristic series is completely reducible. This family contains, by a result of Reutenauer, the submonoids generated by bifix codes and, by a result of Berstel and Reutenauer, the cyclic sets. We study the closure properties of this family. We prove a result on linear representations of monoids which gives a generalization of the result concerning the complete reducibility of the submonoid generated by a bifix code to sets called birecurrent. We also give a new proof of the result concerning cyclic sets.


2008 ◽  
Vol 50 (2) ◽  
pp. 271-288
Author(s):  
HELGE GLÖCKNER

AbstractThe General Curve Lemma is a tool of Infinite-Dimensional Analysis that enables refined studies of differentiability properties of maps between real locally convex spaces to be made. In this article, we generalize the General Curve Lemma in two ways. First, we remove the condition of local convexity in the real case. Second, we adapt the lemma to the case of curves in topological vector spaces over ultrametric fields.


2014 ◽  
Vol 24 (4) ◽  
pp. 723-733
Author(s):  
K.Maciej Przyłuski

Abstract In a Hilbert space setting, necessary and sufficient conditions for the minimum norm solution u to the equation Su = Rz to be continuously dependent on z are given. These conditions are used to study the continuity of minimum energy and linear-quadratic control problems for infinite dimensional linear systems with fixed endpoints.


Sign in / Sign up

Export Citation Format

Share Document