scholarly journals COMPLETELY REDUCIBLE SETS

2013 ◽  
Vol 23 (04) ◽  
pp. 915-941 ◽  
Author(s):  
DOMINIQUE PERRIN

We study the family of rational sets of words, called completely reducible and which are such that the syntactic representation of their characteristic series is completely reducible. This family contains, by a result of Reutenauer, the submonoids generated by bifix codes and, by a result of Berstel and Reutenauer, the cyclic sets. We study the closure properties of this family. We prove a result on linear representations of monoids which gives a generalization of the result concerning the complete reducibility of the submonoid generated by a bifix code to sets called birecurrent. We also give a new proof of the result concerning cyclic sets.

2020 ◽  
Vol 8 ◽  
Author(s):  
MAIKE GRUCHOT ◽  
ALASTAIR LITTERICK ◽  
GERHARD RÖHRLE

We study a relative variant of Serre’s notion of $G$ -complete reducibility for a reductive algebraic group $G$ . We let $K$ be a reductive subgroup of $G$ , and consider subgroups of $G$ that normalize the identity component $K^{\circ }$ . We show that such a subgroup is relatively $G$ -completely reducible with respect to $K$ if and only if its image in the automorphism group of $K^{\circ }$ is completely reducible. This allows us to generalize a number of fundamental results from the absolute to the relative setting. We also derive analogous results for Lie subalgebras of the Lie algebra of $G$ , as well as ‘rational’ versions over nonalgebraically closed fields.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 414 ◽  
Author(s):  
Alberto Ibort ◽  
Miguel Rodríguez

In this paper, both the structure and the theory of representations of finite groupoids are discussed. A finite connected groupoid turns out to be an extension of the groupoids of pairs of its set of units by its canonical totally disconnected isotropy subgroupoid. An extension of Maschke’s theorem for groups is proved showing that the algebra of a finite groupoid is semisimple and all finite-dimensional linear representations of finite groupoids are completely reducible. The theory of characters for finite-dimensional representations of finite groupoids is developed and it is shown that irreducible representations of the groupoid are in one-to-one correspondence with irreducible representation of its isotropy groups, with an extension of Burnside’s theorem describing the decomposition of the regular representation of a finite groupoid. Some simple examples illustrating these results are exhibited with emphasis on the groupoids interpretation of Schwinger’s description of quantum mechanical systems.


2000 ◽  
Vol 43 (1) ◽  
pp. 27-41
Author(s):  
B. A. F. Wehrfritz

AbstractWe consider faithful finitary linear representations of (generalized) wreath products A wrΩH of groups A by H over (potentially) infinite-dimensional vector spaces, having previously considered completely reducible such representations in an earlier paper. The simpler the structure of A the more complex, it seems, these representations can become. If A has no non-trivial abelian normal subgroups, the conditions we present are both necessary and sufficient. They imply, for example, that for such an A, if there exists such a representation of the standard wreath product A wr H of infinite dimension, then there already exists one of finite dimension.


2002 ◽  
Vol 39 (03) ◽  
pp. 581-589 ◽  
Author(s):  
N. R. Mohan ◽  
S. Ravi

We study the closure properties of the family ℒ(α) of classes of life distributions introduced by Lin (1998) under general compounding. We define a discrete analogue of this family and study some properties.


2020 ◽  
Author(s):  
Martin Kutrib

Abstract We study the computational capacity of self-verifying iterative arrays ($${\text {SVIA}}$$ SVIA ). A self-verifying device is a nondeterministic device whose nondeterminism is symmetric in the following sense. Each computation path can give one of the answers yes, no, or do not know. For every input word, at least one computation path must give either the answer yes or no, and the answers given must not be contradictory. It turns out that, for any time-computable time complexity, the family of languages accepted by $${\text {SVIA}}$$ SVIA s is a characterization of the so-called complementation kernel of nondeterministic iterative array languages, that is, languages accepted by such devices whose complementation is also accepted by such devices. $${\text {SVIA}}$$ SVIA s can be sped-up by any constant multiplicative factor as long as the result does not fall below realtime. We show that even realtime $${\text {SVIA}}$$ SVIA are as powerful as lineartime self-verifying cellular automata and vice versa. So they are strictly more powerful than the deterministic devices. Closure properties and various decidability problems are considered.


2007 ◽  
Vol 18 (06) ◽  
pp. 1271-1282 ◽  
Author(s):  
ANDREAS KLEIN ◽  
MARTIN KUTRIB

We introduce a new type of finite copying parallel rewriting system, i. e., grammars with linked nonterminals, which extend the generative capacity of context-free grammars. They can be thought of as having sentential forms where some instances of a nonterminal may be linked. The context-free-like productions replace a nonterminal together with its connected instances. New links are only established between symbols of the derived subforms. A natural limitation is to bound the degree of synchronous rewriting. We present an infinite degree hierarchy of separated language families with the property that degree one characterizes the family of regular and degree two the family of context-free languages. Furthermore, the hierarchy is a refinement of the known hierarchy of finite copying rewriting systems. Several closure properties known from equivalent systems are summarized.


2017 ◽  
Vol 27 (02) ◽  
pp. 237-249
Author(s):  
Rachel Bishop-Ross ◽  
Jon M. Corson ◽  
James Lance Ross

For a given finitely generated group [Formula: see text], the type of languages that are accepted by [Formula: see text]-automata is determined by the word problem of [Formula: see text] for most of the classical types of languages. We observe that the only exceptions are the families of context-sensitive and recursive languages. Thus, in general, to ensure that the language accepted by a [Formula: see text]-automaton is in the same classical family of languages as the word problem of [Formula: see text], some restriction must be imposed on the [Formula: see text]-automaton. We show that restricting to [Formula: see text]-automata without [Formula: see text]-transitions is sufficient for this purpose. We then define the pullback of two [Formula: see text]-automata and use this construction to study the closure properties of the family of languages accepted by [Formula: see text]-automata without [Formula: see text]-transitions. As a further consequence, when [Formula: see text] is the product of two groups, we give a characterization of the family of languages accepted by [Formula: see text]-automata in terms of the families of languages accepted by [Formula: see text]- and [Formula: see text]-automata. We also give a construction of a grammar for the language accepted by an arbitrary [Formula: see text]-automaton and show how to get a context-sensitive grammar when [Formula: see text] is finitely generated with a context-sensitive word problem and the [Formula: see text]-automaton is without [Formula: see text]-transitions.


2020 ◽  
Vol 8 ◽  
Author(s):  
Michael Bate ◽  
Benjamin Martin ◽  
Gerhard Röhrle

Let G be a reductive algebraic group—possibly non-connected—over a field k, and let H be a subgroup of G. If $G= {GL }_n$ , then there is a degeneration process for obtaining from H a completely reducible subgroup $H'$ of G; one takes a limit of H along a cocharacter of G in an appropriate sense. We generalise this idea to arbitrary reductive G using the notion of G-complete reducibility and results from geometric invariant theory over non-algebraically closed fields due to the authors and Herpel. Our construction produces a G-completely reducible subgroup $H'$ of G, unique up to $G(k)$ -conjugacy, which we call a k-semisimplification of H. This gives a single unifying construction that extends various special cases in the literature (in particular, it agrees with the usual notion for $G= GL _n$ and with Serre’s ‘G-analogue’ of semisimplification for subgroups of $G(k)$ from [19]). We also show that under some extra hypotheses, one can pick $H'$ in a more canonical way using the Tits Centre Conjecture for spherical buildings and/or the theory of optimal destabilising cocharacters introduced by Hesselink, Kempf, and Rousseau.


1973 ◽  
Vol 2 (18) ◽  
Author(s):  
Arto Salomaa

The notion of a K-iteration grammar, where K is a family of languages, provides a uniform framework for discussing the various language families obtained by context-free Lindenmayer systems. It is shown that the family of languages generated by K-iteration grammars possesses strong closure properties under the assumption that K itself has certain weak closure properties. Along these lines, the notion of a hyper-AFL is introduced and some open problems are posed.


Sign in / Sign up

Export Citation Format

Share Document